About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 597253, 7 pages
http://dx.doi.org/10.1155/2013/597253
Research Article

The Adjunctive Digital Breast Tomosynthesis in Diagnosis of Breast Cancer

1Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
2National Yang-Ming University, Taipei, Taiwan

Received 8 January 2013; Revised 19 April 2013; Accepted 9 May 2013

Academic Editor: Mei-Hsiu Liao

Copyright © 2013 Tsung-Lung Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Purpose. To compare the diagnostic performance of digital breast tomosynthesis (DBT) and digital mammography (DM) for breast cancers. Materials and Methods. Fifty-seven female patients with pathologically proved breast cancer were enrolled. Three readers gave a subjective assessment superiority of the index lesions (mass, focal asymmetry, architectural distortion, or calcifications) and a forced BIRADS score, based on DM reading alone and with additional DBT information. The relevance between BIRADS category and index lesions of breast cancer was compared by chi-square test. Result. A total of 59 breast cancers were reviewed, including 17 (28.8%) mass lesions, 12 (20.3%) focal asymmetry/density, 6 (10.2%) architecture distortion, 23 (39.0%) calcifications, and 1 (1.7%) intracystic tumor. Combo DBT was perceived to be more informative in 58.8% mass lesions, 83.3% density, 94.4% architecture distortion, and only 11.6% calcifications. As to the forced BIRADS score, 84.4% BIRADS 0 on DM was upgraded to BIRADS 4 or 5 on DBT, whereas only 27.3% BIRADS 4A on DM was upgraded on DBT, as BIRADS 4A lesions were mostly calcifications. A significant value (<0.001) between the BIRADS category and index lesions was noted. Conclusion. Adjunctive DBT gives exquisite information for mass lesion, focal asymmetry, and/or architecture distortion to improve the diagnostic performance in mammography.