About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 597282, 22 pages
http://dx.doi.org/10.1155/2013/597282
Review Article

The Influence of Micronutrients in Cell Culture: A Reflection on Viability and Genomic Stability

1Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
2Instituto de Educação para Pesquisa, Desenvolvimento e Inovação Tecnológica—ROYAL, Unidade GENOTOX—ROYAL, Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43421, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
3PPG em Promoção da Saúde, Universidade de Santa Cruz do Sul (UNISC), Avenida Independência 2293, 96815-900 Santa Cruz do Sul, RS, Brazil
4Instituto de Biotecnologia, Departamento de Ciências Biomédicas, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil

Received 7 January 2013; Revised 23 April 2013; Accepted 3 May 2013

Academic Editor: Vanina Heuser

Copyright © 2013 Ana Lúcia Vargas Arigony et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Iron deficiency. Are you getting enough of this essential mineral?” Mayo Clinic Women's Healthsource, vol. 3, no. 1, p. 6, 1999.
  2. D. Pra, A. Bortoluzzi, L. L. Müller et al., “Iron intake, red cell indicators of iron status, and DNA damage in young subjects,” Nutrition, vol. 27, no. 3, pp. 293–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Pra, S. I. Rech Franke, J. A. Pegas Henriques, and M. Fenech, “A possible link between iron deficiency and gastrointestinal carcinogenesis,” Nutrition and Cancer, vol. 61, no. 4, pp. 415–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Fenech, “The role of folic acid and Vitamin B12 in genomic stability of human cells,” Mutation Research, vol. 475, no. 1-2, pp. 57–67, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Fenech, C. Aitken, and J. Rinaldi, “Folate, vitamin B12, homocysteine status and DNA damage in young Australian adults,” Carcinogenesis, vol. 19, no. 7, pp. 1163–1171, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Salas, I. Font, J. Canals, J. Fernández, and C. Martí-Henneberg, “Consumption, food habits and nutritional status of the Reus population: VI. Risk of micronutrient malnutrition,” Medicina Clinica, vol. 88, no. 10, pp. 405–410, 1987. View at Scopus
  7. C. S. Yang and H. L. Newmark, “The role of micronutrient deficiency in carcinogenesis,” Critical Reviews in Oncology/Hematology, vol. 7, no. 4, pp. 267–287, 1987. View at Scopus
  8. R. M. Russell, “Micronutrient requirements of the elderly,” Nutrition Reviews, vol. 50, no. 12, pp. 463–466, 1992. View at Scopus
  9. L. H. Allen, “Maternal micronutrient malnutrition: effects on breast milk and infant nutrition, and priorities for intervention,” SCN News, no. 11, pp. 21–24, 1994. View at Scopus
  10. S. Mobarhan, “Micronutrient supplementation trials and the reduction of cancer and cerebrovascular incidence and mortality,” Nutrition Reviews, vol. 52, no. 3, pp. 102–105, 1994. View at Scopus
  11. S. Southon, A. J. A. Wright, P. M. Finglas, A. L. Bailey, J. M. Loughridge, and A. D. Walker, “Dietary intake and micronutrient status of adolescents: effect of vitamin and trace element supplementation on indices of status and performance in tests of verbal and non-verbal intelligence,” British Journal of Nutrition, vol. 71, no. 6, pp. 897–918, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. “Know how: vitamins and minerals. Part 5. Key micronutrient requirements during adolescence 11–18 years,” Nursing Times, vol. 93, no. 34, pp. 72–73, 1997.
  13. B. N. Ames, “DNA damage from micronutrient deficiencies is likely to be a major cause of cancer,” Mutation Research, vol. 475, no. 1-2, pp. 7–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. C. Latham, D. Ash, G. Ndossi, H. Mehansho, and S. Tatala, “Micronutrient dietary supplements—a new fourth approach,” Archivos Latinoamericanos de Nutricion, vol. 51, no. 1, pp. 37–41, 2001. View at Scopus
  15. K. A. Bartley, B. A. Underwood, and R. J. Deckelbaum, “A life cycle micronutrient perspective for women's health,” American Journal of Clinical Nutrition, vol. 81, supplement 5, pp. 1188S–1193S, 2005. View at Scopus
  16. B. A. Haider and Z. A. Bhutta, “Multiple-micronutrient supplementation for women during pregnancy,” Cochrane Database of Systematic Reviews, no. 4, p. CD004905, 2006. View at Scopus
  17. I. Thorsdottir and B. S. Gunnarsson, “Dietary quality and adequacy of micronutrient intakes in children,” Proceedings of the Nutrition Society, vol. 65, no. 4, pp. 366–375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Sriram and V. A. Lonchyna, “Micronutrient supplementation in adult nutrition therapy: practical considerations,” Journal of Parenteral and Enteral Nutrition, vol. 33, no. 5, pp. 548–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. L. M. Neufeld and B. M. Cameron, “Identifying nutritional need for multiple micronutrient interventions,” Journal of Nutrition, vol. 142, supplement 1, pp. 166S–172S, 2012. View at Publisher · View at Google Scholar
  20. B. N. Ames, “Micronutrient deficiencies. A major cause of DNA damage,” Annals of the New York Academy of Sciences, vol. 889, pp. 87–106, 1999. View at Scopus
  21. D. Pra, S. I. Rech Franke, J. A. Henriques, and M. Fenech, “Iron and genome stability: an update,” Mutation Research, vol. 733, no. 1-2, pp. 92–99, 2012. View at Publisher · View at Google Scholar
  22. S. Friso and S. W. Choi, “Gene-nutrient interactions and DNA methylation,” Journal of Nutrition, vol. 132, supplement 8, pp. 2382S–2387S, 2002. View at Scopus
  23. M. Fenech and L. R. Ferguson, “Vitamins/minerals and genomic stability in humans,” Mutation Research, vol. 475, no. 1-2, pp. 1–6, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Fenech and L. R. Ferguson, “Vitamins/minerals and genomic stability in humans,” Mutation Research, vol. 475, no. 1-2, pp. 1–6, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. B. N. Ames, “DNA damage from micronutrient deficiencies is likely to be a major cause of cancer,” Mutation Research, vol. 475, no. 1-2, pp. 7–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Halliwell, “Vitamin C and genomic stability,” Mutation Research, vol. 475, no. 1-2, pp. 29–35, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. K. J. Claycombe and S. N. Meydani, “Vitamin E and genome stability,” Mutation Research, vol. 475, no. 1-2, pp. 37–44, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Chatterjee, “Vitamin D and genomic stability,” Mutation Research, vol. 475, no. 1-2, pp. 69–88, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Hartwig, “Role of magnesium in genomic stability,” Mutation Research, vol. 475, no. 1-2, pp. 113–121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. J. M. De Freitas and R. Meneghini, “Iron and its sensitive balance in the cell,” Mutation Research, vol. 475, no. 1-2, pp. 153–159, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. A. R. Collins, “Carotenoids and genomic stability,” Mutation Research, vol. 475, no. 1-2, pp. 21–28, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Wang, A. M. Joshi, K. Ohnaka et al., “Dietary intakes of retinol, carotenes, vitamin C, and vitamin E and colorectal cancer risk: the Fukuoka colorectal cancer study,” Nutrition and Cancer, vol. 64, no. 6, pp. 798–805, 2012. View at Publisher · View at Google Scholar
  33. S. R. Rana, N. Colman, and Kong OO Goh, “Transcobalamin II deficiency associated with unusual bone marrow findings and chromosomal abnormalities,” American Journal of Hematology, vol. 14, no. 1, pp. 89–96, 1983. View at Scopus
  34. N. Bryan, K. D. Andrews, M. J. Loughran, N. P. Rhodes, and J. A. Hunt, “Elucidating the contribution of the elemental composition of fetal calf serum to antigenic expression of primary human umbilical-vein endothelial cells in vitro,” Bioscience Reports, vol. 31, no. 3, pp. 199–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Hennings, D. Michael, and C. Cheng, “Calcium regulation of growth and differentiation of mouse epidermal cells in culture,” Cell, vol. 19, no. 1, pp. 245–254, 1980. View at Scopus
  36. X. M. Zhang, G. W. Huang, Z. H. Tian, D. L. Ren, and J. X. Wilson, “Folate stimulates ERK1/2 phosphorylation and cell proliferation in fetal neural stem cells,” Nutritional Neuroscience, vol. 12, no. 5, pp. 226–232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. N. E. L. Saris, E. Mervaala, H. Karppanen, J. A. Khawaja, and A. Lewenstam, “Magnesium: an update on physiological, clinical and analytical aspects,” Clinica Chimica Acta, vol. 294, no. 1-2, pp. 1–26, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. D. H. Boldt, “New perspectives on iron: an introduction,” American Journal of the Medical Sciences, vol. 318, no. 4, pp. 207–212, 1999. View at Scopus
  39. S. Friso and S. W. Choi, “Gene-nutrient interactions and DNA methylation,” Journal of Nutrition, vol. 132, supplement 8, pp. 2382S–2387S, 2002. View at Scopus
  40. L. R. Ferguson and M. Philpott, “Nutrition and mutagenesis,” Annual Review of Nutrition, vol. 28, pp. 313–329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Scopus
  42. T. Sjöblom, S. Jones, L. D. Wood et al., “The consensus coding sequences of human breast and colorectal cancers,” Science, vol. 314, no. 5797, pp. 268–274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. B. N. Ames, “Micronutrients prevent cancer and delay aging,” Toxicology Letters, vol. 102-103, pp. 5–18, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Fenech, “Micronutrients and genomic stability: a new paradigm for recommended dietary allowances (RDAs),” Food and Chemical Toxicology, vol. 40, no. 8, pp. 1113–1117, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. A. C. Boyonoski, L. M. Gallacher, M. M. ApSimon et al., “Niacin deficiency increases the sensitivity of rats to the short and long term effects of ethylnitrosourea treatment,” Molecular and Cellular Biochemistry, vol. 193, no. 1-2, pp. 83–87, 1999. View at Scopus
  46. E. L. Jacobson, W. M. Shieh, and A. C. Huang, “Mapping the role of NAD metabolism in prevention and treatment of carcinogenesis,” Molecular and Cellular Biochemistry, vol. 193, no. 1-2, pp. 69–74, 1999. View at Scopus
  47. C. M. Simbulan-Rosenthal, B. R. Haddad, D. S. Rosenthal et al., “Chromosomal aberrations in PARP−/− mice: genome stabilization in immortalized cells by reintroduction of poly(ADP-ribose) polymerase cDNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 23, pp. 13191–13196, 1999. View at Scopus
  48. C. Bolognesi, E. Ognio, L. Ferreri-Santi, and L. Rossi, “Modulation of DNA damage by vitamin A in developing Sprague-Dawley rats,” Anticancer Research, vol. 12, no. 5, pp. 1587–1591, 1992. View at Scopus
  49. Institute of Medicine (IOM), Dietary Reference Intakes For Vitamin C, Vitamin E, Selenium, and Carotenoids. Food and Nutrition Board, National Academy Press, Washington, DC, USA, 2000.
  50. F. Klamt, F. Dal-Pizzol, R. Roehrs et al., “Genotoxicity, recombinogenicity and cellular preneoplasic transformation induced by Vitamin A supplementation,” Mutation Research, vol. 539, no. 1-2, pp. 117–125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. Institute of Medicine (IOM), Dietary Reference Intakes For Dietary Reference Intakes For Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Food and Nutrition Board, National Academy Press, Washington, DC, USA, 1998.
  52. J. Zempleni, D. C. Teixeira, T. Kuroishi, E. L. Cordonier, and S. Baier, “Biotin requirements for DNA damage prevention,” Mutation Research, vol. 733, no. 1-2, pp. 58–60, 2012. View at Publisher · View at Google Scholar
  53. M. Fenech, P. Baghurst, W. Luderer et al., “Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, β-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability—results from a dietary intake and micronucleus index survey in South Australia,” Carcinogenesis, vol. 26, no. 5, pp. 991–999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Báez-Saldaña, I. Camacho-Arroyo, J. J. Espinosa-Aguirre et al., “Biotin deficiency and biotin excess: effects on the female reproductive system,” Steroids, vol. 74, no. 10-11, pp. 863–869, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Kliemann, D. Pra, L. L. Muller et al., “DNA damage in children and adolescents with cardiovascular disease risk factors,” Anais da Academia Brasileira de Ciências, vol. 84, no. 3, pp. 833–840, 2012.
  56. L. Pellis, Y. Dommels, D. Venema et al., “High folic acid increases cell turnover and lowers differentiation and iron content in human HT29 colon cancer cells,” British Journal of Nutrition, vol. 99, no. 4, pp. 703–708, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. I. D. Podmore, H. R. Griffiths, K. E. Herbert, N. Mistry, P. Mistry, and J. Lunec, “Vitamin C exhibits pro-oxidant properties,” Nature, vol. 392, no. 6676, p. 559, 1998. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Constantinou, C. M. Neophytou, P. Vraka, J. A. Hyatt, K. A. Papas, and A. I. Constantinou, “Induction of DNA damage and caspase-independent programmed cell death by vitamin E,” Nutrition and Cancer, vol. 64, no. 1, pp. 136–152, 2012.
  59. S. N. Hawk, L. Lanoue, C. L. Keen, C. L. Kwik-Uribe, R. B. Rucker, and J. Y. Uriu-Adams, “Copper-deficient rat embryos are characterized by low superoxide dismutase activity and elevated superoxide anions,” Biology of Reproduction, vol. 68, no. 3, pp. 896–903, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. Institute of Medicine (IOM), Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Molybdenum, Nickel, Sillicon, Vanadium and Zinc. Food and Nutrition Board, National Academy Press, Washington, DC, USA, 2001.
  61. A. Hartwig, “Role of magnesium in genomic stability,” Mutation Research, vol. 475, no. 1-2, pp. 113–121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. Institute of Medicine (IOM), Dietary Reference Intakes for Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Food and Nutrition Board, National Academy Press, Washington, DC, USA, 1997.
  63. E. C. Chiang, S. Shen, S. S. Kengeri et al., “Defining the optimal selenium dose for prostate cancer risk reduction: insights from the u-shaped relationship between selenium status, DNA damage, and apoptosis,” Dose-Response, vol. 8, no. 3, pp. 285–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. U. Harréus, P. Baumeister, S. Zieger, and C. Matthias, “The influence of high doses of vitamin C and zinc on oxidative DNA damage,” Anticancer Research, vol. 25, no. 5, pp. 3197–3201, 2005. View at Scopus
  65. A. Azqueta and A. R. Collins, “Carotenoids and DNA damage,” Mutation Research, vol. 733, no. 1-2, pp. 4–13, 2012. View at Publisher · View at Google Scholar
  66. R. Roehrs, D. R. J. Freitas, A. Masuda et al., “Effect of vitamin A treatment on superoxide dismutase-deficient yeast strains,” Archives of Microbiology, vol. 192, no. 3, pp. 221–228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. L. M. Lee, C. Y. Leung, W. W. Tang et al., “A paradoxical teratogenic mechanism for retinoic acid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 34, pp. 13668–13673, 2012. View at Publisher · View at Google Scholar
  68. M. F. Donald and S. McLaren, “Sight and life manual on vitamin A deficiency disorders (VADD),” in Task Force Sight and Life, T. F. S. A. LIFE, Ed., 2001.
  69. A. Sommer and K. S. Vyas, “A global clinical view on vitamin A and carotenoids,” American Journal of Clinical Nutrition, vol. 96, supplement 5, pp. 1204S–1206S, 2012.
  70. L. Mayende, R. D. Swift, L. M. Bailey et al., “A novel molecular mechanism to explain biotin-unresponsive holocarboxylase synthetase deficiency,” Journal of Molecular Medicine, vol. 90, no. 1, pp. 81–88, 2012. View at Publisher · View at Google Scholar
  71. S. Jitrapakdee and J. C. Wallace, “The biotin enzyme family: conserved structural motifs and domain rearrangements,” Current Protein and Peptide Science, vol. 4, no. 3, pp. 217–229, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Saunders, L. Sweetman, and B. Robinson, “Biotin-response organicaciduria. Multiple carboxylase defects and complementation studies with propionicacidemia in cultured fibroblasts,” Journal of Clinical Investigation, vol. 64, no. 6, pp. 1695–1702, 1979. View at Scopus
  73. B. Wolf and G. L. Feldman, “The biotin-dependent carboxylase deficiencies,” American Journal of Human Genetics, vol. 34, no. 5, pp. 699–716, 1982. View at Scopus
  74. C. J. Wilson, M. Myer, B. A. Darlow et al., “Severe holocarboxylase synthetase deficiency with incomplete biotin responsiveness resulting in antenatal insult in Samoan neonates,” Journal of Pediatrics, vol. 147, no. 1, pp. 115–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Rodriguez-Melendez, J. B. Griffin, and J. Zempleni, “Biotin supplementation increases expression of the cytochrome P 450 1B1 gene in Jurkat cells, increasing the occurrence of single-stranded DNA breaks,” Journal of Nutrition, vol. 134, no. 9, pp. 2222–2228, 2004. View at Scopus
  76. T. Watanabe, Y. Nagai, A. Taniguchi, S. Ebara, S. Kimura, and T. Fukui, “Effects of biotin deficiency on embryonic development in mice,” Nutrition, vol. 25, no. 1, pp. 78–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Dakshinamurti and J. Chauhan, “Biotin,” Vitamins and Hormones C, vol. 45, pp. 337–384, 1989. View at Publisher · View at Google Scholar · View at Scopus
  78. B. C. Blount, M. M. Mack, C. M. Wehr et al., “Medical sciences folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 7, pp. 3290–3295, 1997. View at Scopus
  79. B. C. Blount and B. N. Ames, “DNA damage in folate deficiency,” Bailliere's Clinical Haematology, vol. 8, no. 3, pp. 461–478, 1995. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Lindahl and R. D. Wood, “Quality control by DNA repair,” Science, vol. 286, no. 5446, pp. 1897–1905, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. G. M. Li, S. R. Presnell, and L. Gu, “Folate deficiency, mismatch repair-dependent apoptosis, and human disease,” Journal of Nutritional Biochemistry, vol. 14, no. 10, pp. 568–575, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. N. Pancharuniti, C. A. Lewis, H. E. Sauberlich et al., “Plasma homocyst(e)ine, folate, and vitamin B-12 concentrations and risk for early-onset coronary artery disease,” American Journal of Clinical Nutrition, vol. 59, no. 4, pp. 940–948, 1994. View at Scopus
  83. Y. I. Kim, “Folate, colorectal carcinogenesis, and DNA methylation: lessons from animal studies,” Environmental and Molecular Mutagenesis, vol. 44, no. 1, pp. 10–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Chen, E. Giovannucci, K. Kelsey et al., “A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer,” Cancer Research, vol. 56, no. 21, pp. 4862–4864, 1996. View at Scopus
  85. J. Ma, M. J. Stampfer, E. Giovannucci et al., “Methylenetetrahydrofolate reductase polymorsphism, dietary interactions, and risk of colorectal cancer,” Cancer Research, vol. 57, no. 6, pp. 1098–1102, 1997. View at Scopus
  86. E. Giovannucci, M. J. Stampfer, G. A. Colditz et al., “Multivitamin use, folate, and colon cancer in women in the nurses' health study,” Annals of Internal Medicine, vol. 129, no. 7, pp. 517–524, 1998. View at Scopus
  87. S. Zhang, D. J. Hunter, S. E. Hankinson et al., “A prospective study of folate intake and the risk of breast cancer,” Journal of the American Medical Association, vol. 281, no. 17, pp. 1632–1637, 1999. View at Publisher · View at Google Scholar · View at Scopus
  88. J. M. Salbaum and C. Kappen, “Genetic and epigenomic footprints of folate,” Progress in Molecular Biology and Translational Science, vol. 108, pp. 129–158, 2012. View at Publisher · View at Google Scholar
  89. S. F. Battaglia-Hsu, N. Akchiche, N. Noel et al., “Vitamin B12 deficiency reduces proliferation and promotes differentiation of neuroblastoma cells and up-regulates PP2A, proNGF, and TACE,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 51, pp. 21930–21935, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. M. S. Morris, “The role of B vitamins in preventing and treating cognitive impairment and decline,” Advances in Nutrition, vol. 3, no. 6, pp. 801–812, 2012. View at Publisher · View at Google Scholar
  91. J. M. Zingg and P. A. Jones, “Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis,” Carcinogenesis, vol. 18, no. 5, pp. 869–882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. T. Sanz-Cuesta, P. Gonzalez-Escobar, R. Riesgo-Fuertes et al., “Oral versus intramuscular administration of vitamin B12 for the treatment of patients with vitamin B12 deficiency: a pragmatic, randomised, multicentre, non-inferiority clinical trial undertaken in the primary healthcare setting (Project OB12),” BMC Public Health, vol. 12, p. 394, 2012.
  93. D. L. Smith, “Anemia in the elderly,” American Family Physician, vol. 62, no. 7, pp. 1565–1572, 2000. View at Scopus
  94. M. G. Traber and J. F. Stevens, “Vitamins C and E: beneficial effects from a mechanistic perspective,” Free Radical Biology and Medicine, vol. 51, no. 5, pp. 1000–1013, 2011. View at Publisher · View at Google Scholar
  95. P. H. Gann, “Randomized trials of antioxidant supplementation for cancer prevention: first bias, now chance—next, cause,” Journal of the American Medical Association, vol. 301, no. 1, pp. 102–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. J. M. Gaziano, R. J. Glynn, W. G. Christen et al., “Vitamins E and C in the prevention of prostate and total cancer in men: the physicians' health study II randomized controlled trial,” Journal of the American Medical Association, vol. 301, no. 1, pp. 52–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. S. J. Padayatty, A. Y. Sun, Q. Chen, M. G. Espey, J. Drisko, and M. Levine, “Vitamin C: intravenous use by complementary and alternative medicine practitioners and adverse effects,” PLoS One, vol. 5, no. 7, Article ID e11414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. J. X. Wilson, “Mechanism of action of vitamin C in sepsis: ascorbate modulates redox signaling in endothelium,” BioFactors, vol. 35, no. 1, pp. 5–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. G. L. Bowman, H. Dodge, B. Frei et al., “Ascorbic acid and rates of cognitive decline in Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 16, no. 1, pp. 93–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. R. D. Ravindran, P. Vashist, S. K. Gupta et al., “Prevalence and risk factors for vitamin C deficiency in north and south India: a two centre population based study in people aged 60 years and over,” PLoS One, vol. 6, no. 12, Article ID e28588, 2011.
  101. M. G. Traber and J. Atkinson, “Vitamin E, antioxidant and nothing more,” Free Radical Biology and Medicine, vol. 43, no. 1, pp. 4–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. Y. Ni and C. Eng, “Vitamin E protects against lipid peroxidation and rescues tumorigenic phenotypes in cowden/cowden-like patient-derived lymphoblast cells with germline SDHx variants,” Clinical Cancer Research, vol. 18, no. 18, pp. 4954–4961, 2012. View at Publisher · View at Google Scholar
  103. T. Bergstrom, C. Ersson, J. Bergman, and L. Moller, “Vitamins at physiological levels cause oxidation to the DNA nucleoside deoxyguanosine and to DNA—alone or in synergism with metals,” Mutagenesis, vol. 27, no. 4, pp. 511–517, 2012. View at Publisher · View at Google Scholar
  104. D. K. Dror and L. H. Allen, “Vitamin e deficiency in developing countries,” Food and Nutrition Bulletin, vol. 32, no. 2, pp. 124–143, 2011. View at Scopus
  105. M. C. Linder, “The relationship of copper to DNA damage and damage prevention in humans,” Mutation Research, vol. 733, no. 1-2, pp. 83–91, 2012. View at Publisher · View at Google Scholar
  106. J. F. Collins and L. M. Klevay, “Copper,” Advances in Nutrition, vol. 2, no. 6, pp. 520–522, 2011. View at Publisher · View at Google Scholar
  107. T. Theophanides and J. Anastassopoulou, “Copper and carcinogenesis,” Critical Reviews in Oncology/Hematology, vol. 42, no. 1, pp. 57–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chemico-Biological Interactions, vol. 160, no. 1, pp. 1–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Rudolf, V. Makrantoni, W. J. Ingledew, M. J. R. Stark, and M. F. White, “The DNA repair helicases XPD and FancJ have essential iron-sulfur domains,” Molecular Cell, vol. 23, no. 6, pp. 801–808, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. R. Aspinwall, D. G. Rothwell, T. Roldan-Arjona et al., “Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 1, pp. 109–114, 1997. View at Publisher · View at Google Scholar · View at Scopus
  112. J. R. Conner and S. A. Benkovic, “Iron regulation in the brain: histochemical, biochemical, and molecular consideration,” Annals of Neurology, vol. 32, supplement 1, pp. S51–S61, 1992. View at Publisher · View at Google Scholar
  113. D. A. Loeffler, J. R. Connor, P. L. Juneau et al., “Transferrin and iron in normal, Alzheimer's disease, and Parkinson's disease brain regions,” Journal of Neurochemistry, vol. 65, no. 2, pp. 710–716, 1995. View at Scopus
  114. S. R. Pasricha, “Should we screen for iron deficiency anaemia? A review of the evidence and recent recommendations,” Pathology, vol. 44, no. 2, pp. 139–147, 2012.
  115. J. Montupil and J. L. Vincent, “Magnesium in critical care and anesthesiologia,” Revue medicale de Bruxelles, vol. 33, no. 5, pp. 466–474, 2012.
  116. T. Kuno, Y. Hatano, H. Tomita et al., “Organomagnesium suppresses inflammation-associated colon carcinogenesis in male Crj: CD-1 mice,” Carcinogenesis, vol. 34, no. 2, pp. 361–369, 2013.
  117. M. Barbagallo, L. J. Dominguez, A. Galioto et al., “Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X,” Molecular Aspects of Medicine, vol. 24, no. 1–3, pp. 39–52, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Houston, “The role of magnesium in hypertension and cardiovascular disease,” Journal of Clinical Hypertension, vol. 13, no. 11, pp. 843–847, 2011. View at Publisher · View at Google Scholar
  119. A. Rosanoff, C. M. Weaver, and R. K. Rude, “Suboptimal magnesium status in the United States: are the health consequences underestimated?” Nutrition Reviews, vol. 70, no. 3, pp. 153–164, 2012. View at Publisher · View at Google Scholar
  120. K. Pasternak, J. Kocot, and A. Horecka, “Biochemistry of magnesium,” Journal of Elementology, vol. 15, no. 3, pp. 601–616, 2010. View at Scopus
  121. S. Adhikari, J. A. Toretsky, L. Yuan, and R. Roy, “Magnesium, essential for base excision repair enzymes, inhibits substrate binding of N-methylpurine-DNA glycosylase,” Journal of Biological Chemistry, vol. 281, no. 40, pp. 29525–29532, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. E. Ma, S. Sasazuki, M. Inoue et al., “High dietary intake of magnesium may decrease risk of colorectal cancer in Japanese men,” Journal of Nutrition, vol. 140, no. 4, pp. 779–785, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. P. A. van den Brandt, K. M. Smits, R. A. Goldbohm, and M. P. Weijenberg, “Magnesium intake and colorectal cancer risk in the Netherlands Cohort Study,” British Journal of Cancer, vol. 96, no. 3, pp. 510–513, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. E. S. Ford and A. H. Mokdad, “Dietary magnesium intake in a national sample of U.S. adults,” Journal of Nutrition, vol. 133, no. 9, pp. 2879–2882, 2003. View at Scopus
  125. L. Schomburg, U. Schweizer, and J. Köhrle, “Selenium and selenoproteins in mammals: extraordinary, essential, enigmatic,” Cellular and Molecular Life Sciences, vol. 61, no. 16, pp. 1988–1995, 2004. View at Scopus
  126. R. Muecke, L. Schomburg, J. Buentzel, K. Kisters, and O. Micke, “Selenium or no selenium-that is the question in tumor patients: a new controversy,” Integrative Cancer Therapies, vol. 9, no. 2, pp. 136–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. G. V. Kryukov, R. A. Kumar, A. Koc, Z. Sun, and V. N. Gladyshev, “Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 7, pp. 4245–4250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  128. Y. Saito and K. Takahashi, “Characterization of selenoprotein P as a selenium supply protein,” European Journal of Biochemistry, vol. 269, no. 22, pp. 5746–5751, 2002. View at Publisher · View at Google Scholar · View at Scopus
  129. A. U. Bräuer and N. E. Savaskan, “Molecular actions of selenium in the brain: neuroprotective mechanisms of an essential trace element,” Reviews in the Neurosciences, vol. 15, no. 1, pp. 19–32, 2004. View at Scopus
  130. L. V. Papp, J. Lu, A. Holmgren, and K. K. Khanna, “From selenium to selenoproteins: synthesis, identity, and their role in human health,” Antioxidants and Redox Signaling, vol. 9, no. 7, pp. 775–806, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. M. P. Rayman, “The importance of selenium to human health,” The Lancet, vol. 356, no. 9225, pp. 233–241, 2000. View at Scopus
  132. G. Mugesh, W. W. Du Mont, and H. Sies, “Chemistry of biologically important synthetic organoselenium compounds,” Chemical Reviews, vol. 101, no. 7, pp. 2125–2179, 2001. View at Publisher · View at Google Scholar · View at Scopus
  133. C. W. Nogueira, G. Zeni, and J. B. T. Rocha, “Organoselenium and organotellurium compounds: toxicology and pharmacology,” Chemical Reviews, vol. 104, no. 12, pp. 6255–6285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. R. M. Rosa, R. Roesler, A. L. Braga, J. Saffi, and J. A. P. Henriques, “Pharmacology and toxicology of diphenyl diselenide in several biological models,” Brazilian Journal of Medical and Biological Research, vol. 40, no. 10, pp. 1287–1304, 2007. View at Scopus
  135. M. D. S. Machado, I. V. Villela, D. J. Moura et al., “3′3-Ditrifluoromethyldiphenyl diselenide: a new organoselenium compound with interesting antigenotoxic and antimutagenic activities,” Mutation Research, vol. 673, no. 2, pp. 133–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. A. Hartwig, H. Blessing, T. Schwerdtle, and I. Walter, “Modulation of DNA repair processes by arsenic and selenium compounds,” Toxicology, vol. 193, no. 1-2, pp. 161–167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. E. Millan Adame, D. Florea, L. Saez Perez et al., “Deficient selenium status of a healthy adult Spanish population,” Nutrición Hospitalaria, vol. 27, no. 2, pp. 524–528, 2012.
  138. J. E. Spallholz, “On the nature of selenium toxicity and carcinostatic activity,” Free Radical Biology and Medicine, vol. 17, no. 1, pp. 45–64, 1994. View at Publisher · View at Google Scholar · View at Scopus
  139. K. H. Brown, J. M. Peerson, J. Rivera, and L. H. Allen, “Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trials,” American Journal of Clinical Nutrition, vol. 75, no. 6, pp. 1062–1071, 2002. View at Scopus
  140. R. Puca, L. Nardinocchi, M. Porru et al., “Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs,” Cell Cycle, vol. 10, no. 10, pp. 1679–1689, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. L. R. Ferguson and M. F. Fenech, “Vitamin and minerals that influence genome integrity, and exposure/intake levels associated with DNA damage prevention,” Mutation Research, vol. 733, no. 1-2, pp. 1–3, 2012. View at Publisher · View at Google Scholar
  142. S. Lynch, “Case studies: iron,” American Journal of Clinical Nutrition, vol. 94, supplement 2, pp. 673S–678S, 2011. View at Publisher · View at Google Scholar
  143. D. J. Morath and M. Mayer-Pröschel, “Iron modulates the differentiation of a distinct population of glial precursor cells into oligodendrocytes,” Developmental Biology, vol. 237, no. 1, pp. 232–243, 2001. View at Publisher · View at Google Scholar · View at Scopus
  144. T. Lindl, Zell- Und Gewebekultur, Spektrum Akademischer, Heidelberg, Germany, 5th edition, 2002.
  145. M. A. Ross, L. K. Crosley, K. M. Brown et al., “Plasma concentrations of carotenoids and antioxidant vitamins in Scottish males: influences of smoking,” European Journal of Clinical Nutrition, vol. 49, no. 11, pp. 861–865, 1995. View at Scopus
  146. D. M. Mock and M. I. Malik, “Distribution of biotin in human plasma: most of the biotin is not bound to protein,” American Journal of Clinical Nutrition, vol. 56, no. 2, pp. 427–432, 1992. View at Scopus
  147. A. Brevik, S. E. Vollset, G. S. Tell et al., “Plasma concentration of folate as a biomarker for the intake of fruit and vegetables: the Hordaland homocysteine study,” American Journal of Clinical Nutrition, vol. 81, no. 2, pp. 434–439, 2005. View at Scopus
  148. R. Carmel, “Biomarkers of cobalamin (vitamin B-12) status in the epidemiologic setting: a critical overview of context, applications, and performance characteristics of cobalamin, methylmalonic acid, and holotranscobalamin II,” American Journal of Clinical Nutrition, vol. 94, supplement 1, pp. 348S–358S, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. K. Hensley, E. J. Benaksas, R. Bolli et al., “New perspectives on vitamin E: γ-tocopherol and carboxyethylhydroxychroman metabolites in biology and medicine,” Free Radical Biology and Medicine, vol. 36, no. 1, pp. 1–15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  150. J. F. Sullivan, A. J. Blotcky, and M. M. Jetton, “Serum levels of selenium, calcium, copper magnesium, manganese and zinc in various human diseases,” Journal of Nutrition, vol. 109, no. 8, pp. 1432–1437, 1979. View at Scopus
  151. H. Cunzhi, J. Jiexian, Z. Xianwen, G. Jingang, Z. Shumin, and D. Lili, “Serum and tissue levels of six trace elements and copper/zinc ratio in patients with cervical cancer and uterine myoma,” Biological Trace Element Research, vol. 94, no. 2, pp. 113–122, 2003. View at Publisher · View at Google Scholar · View at Scopus
  152. D. Jayme, T. Watanabe, and T. Shimada, “Basal medium development for serum-free culture: a historical perspective,” Cytotechnology, vol. 23, no. 1–3, pp. 95–101, 1997. View at Scopus
  153. J. van der Valk, D. Mellor, R. Brands et al., “The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture,” Toxicology in Vitro, vol. 18, no. 1, pp. 1–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  154. H. Cohly, H. Cohly, J. Stephens et al., “Cell culture conditions affect LPS inducibility of the inflammatory mediators in J774A.1 murine macrophages,” Immunological Investigations, vol. 30, no. 1, pp. 1–15, 2001. View at Publisher · View at Google Scholar · View at Scopus
  155. S. Proulx, S. Landreville, S. L. Guérin, and C. Salesse, “Integrin α5 expression by the ARPE-19 cell line: comparison with primary RPE cultures and effect of growth medium on the α5 gene promoter strength,” Experimental Eye Research, vol. 79, no. 2, pp. 157–165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. J. Tian, K. Ishibashi, S. Honda, S. A. Boylan, L. M. Hjelmeland, and J. T. Handa, “The expression of native and cultured human retinal pigment epithelial cells grown in different culture conditions,” British Journal of Ophthalmology, vol. 89, no. 11, pp. 1510–1517, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. A. Shahdadfar, K. Frønsdal, T. Haug, F. P. Reinholt, and J. E. Brinchmann, “In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability,” Stem Cells, vol. 23, no. 9, pp. 1357–1366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. K. Turnovcova, K. Ruzickova, V. Vanecek, E. Sykova, and P. Jendelova, “Properties and growth of human bone marrow mesenchymal stromal cells cultivated in different media Expansion of MSC in different media,” Cytotherapy, vol. 11, no. 7, pp. 874–885, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. Y. G. J. van Helden, J. Keijer, S. G. Heil et al., “Beta-carotene affects oxidative stress-related DNA damage in lung epithelial cells and in ferret lung,” Carcinogenesis, vol. 30, no. 12, pp. 2070–2076, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. Y. G. J. van Helden, J. Keijer, A. M. Knaapen et al., “β-Carotene metabolites enhance inflammation-induced oxidative DNA damage in lung epithelial cells,” Free Radical Biology and Medicine, vol. 46, no. 2, pp. 299–304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. T. Bergstrom, J. Bergman, and L. Moller, “Vitamin A and C compounds permitted in supplements differ in their abilities to affect cell viability, DNA and the DNA nucleoside deoxyguanosine,” Mutagenesis, vol. 26, no. 6, pp. 735–744, 2011. View at Publisher · View at Google Scholar
  162. S. H. Jang, J. W. Lim, and H. Kim, “Mechanism of β-carotene-induced apoptosis of gastric cancer cells: involvement of ataxia-telangiectasia-mutated,” Annals of the New York Academy of Sciences, vol. 1171, pp. 156–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. E. Yurtcu, O. D. Iseri, and F. I. Sahin, “Effects of ascorbic acid and beta-carotene on HepG2 human hepatocellular carcinoma cell line,” Molecular Biology Reports, vol. 38, no. 7, pp. 4265–4272, 2011. View at Publisher · View at Google Scholar
  164. G. D. Zhou, M. Richardson, I. S. Fazili et al., “Role of retinoic acid in the modulation of benzo(a)pyrene-DNA adducts in human hepatoma cells: implications for cancer prevention,” Toxicology and Applied Pharmacology, vol. 249, no. 3, pp. 224–230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. K. C. Manthey, J. B. Griffin, and J. Zempleni, “Biotin supply affects expression of biotin transporters, biotinylation of carboxylases and metabolism of interleukin-2 in Jurkat cells,” Journal of Nutrition, vol. 132, no. 5, pp. 887–892, 2002. View at Scopus
  166. H. L. Lin, C. J. Chen, W. C. Tsai, J. H. Yen, and H. W. Liu, “In vitro folate deficiency induces apoptosis by a p53, Fas (Apo-1, CD95) independent, bcl-2 related mechanism in phytohaemagglutinin-stimulated human peripheral blood lymphocytes,” British Journal of Nutrition, vol. 95, no. 5, pp. 870–878, 2006. View at Publisher · View at Google Scholar · View at Scopus
  167. J. A. Reidy, “Folate- and deoxyuridine-sensitive chromatid breakage may result from DNA repair during G2,” Mutation Research, vol. 192, no. 3, pp. 217–219, 1987. View at Scopus
  168. K. Sato, J. Kanno, T. Tominaga, Y. Matsubara, and S. Kure, “De novo and salvage pathways of DNA synthesis in primary cultured neurall stem cells,” Brain Research, vol. 1071, no. 1, pp. 24–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  169. D. Y. Jia, H. J. Liu, F. W. Wang et al., “Folic acid supplementation affects apoptosis and differentiation of embryonic neural stem cells exposed to high glucose,” Neuroscience Letters, vol. 440, no. 1, pp. 27–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. M. Kikuchi, S. Kashii, Y. Honda, Y. Tamura, K. Kaneda, and A. Akaike, “Protective effects of methylcobalamin, a vitamin B12 analog, against glutamate-induced neurotoxicity in retinal cell culture,” Investigative Ophthalmology and Visual Science, vol. 38, no. 5, pp. 848–854, 1997. View at Scopus
  171. G. R. McLean, E. V. Quadros, S. P. Rothenberg, A. C. Morgan, J. W. Schrader, and H. J. Ziltener, “Antibodies to transcobalamin II block in vitro proliferation of leukemic cells,” Blood, vol. 89, no. 1, pp. 235–242, 1997. View at Scopus
  172. T. L. Duarte, G. M. Almeida, and G. D. D. Jones, “Investigation of the role of extracellular H2O2 and transition metal ions in the genotoxic action of ascorbic acid in cell culture models,” Toxicology Letters, vol. 170, no. 1, pp. 57–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  173. M. Sugiyama, K. Tsuzuki, and R. Ogura, “Effect of ascorbic acid on DNA damage, cytotoxicity, glutathione reductase, and formation of paramagnetic chromium in Chinese hamster V-79 cells treated with sodium chromate (VI),” Journal of Biological Chemistry, vol. 266, no. 6, pp. 3383–3386, 1991. View at Scopus
  174. M. S. Stewart, G. S. Cameron, and B. C. Pence, “Antioxidant nutrients protect against UVB-induced oxidative damage to DNA of mouse keratinocytes in culture,” Journal of Investigative Dermatology, vol. 106, no. 5, pp. 1086–1089, 1996. View at Scopus
  175. S. F. Sweetman, J. J. Strain, and V. J. McKelvey-Martin, “Effect of antioxidant vitamin supplementation on DNA damage and repair in human lymphoblastoid cells,” Nutrition and Cancer, vol. 27, no. 2, pp. 122–130, 1997. View at Scopus
  176. S. Abid-Essefi, I. Baudrimont, W. Hassen et al., “DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: prevention by Vitamin E,” Toxicology, vol. 192, no. 2-3, pp. 237–248, 2003. View at Publisher · View at Google Scholar · View at Scopus
  177. T. H. Hung, S. F. Chen, M. J. Li, Y. L. Yeh, and T. T. Hsieh, “Differential effects of concomitant use of vitamins C and E on trophoblast apoptosis and autophagy between normoxia and hypoxia-reoxygenation,” PLoS One, vol. 5, no. 8, Article ID e12202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. P. Palozza, S. Serini, F. Di Nicuolo, E. Piccioni, and G. Calviello, “Prooxidant effects of β-carotene in cultured cells,” Molecular Aspects of Medicine, vol. 24, no. 6, pp. 353–362, 2003. View at Publisher · View at Google Scholar · View at Scopus
  179. R. Rodriguez-Melendez and J. Zempleni, “Regulation of gene expression by biotin,” Journal of Nutritional Biochemistry, vol. 14, no. 12, pp. 680–690, 2003. View at Publisher · View at Google Scholar · View at Scopus
  180. S. W. Choi and J. B. Mason, “Folate and carcinogenesis: an integrated scheme,” Journal of Nutrition, vol. 130, no. 2, pp. 129–132, 2000. View at Scopus
  181. P. J. Stover, “Physiology of folate and vitamin B12 in health and disease,” Nutrition Reviews, vol. 62, supplement 6, pp. S3–S13, 2004. View at Scopus
  182. O. Bashir, A. J. FitzGerald, and R. A. Goodlad, “Both suboptimal and elevated vitamin intake increase intestinal neoplasia and alter crypt fission in the ApcMin/+ mouse,” Carcinogenesis, vol. 25, no. 8, pp. 1507–1515, 2004. View at Publisher · View at Google Scholar · View at Scopus
  183. M. G. Traber and J. F. Stevens, “Vitamins C and E: beneficial effects from a mechanistic perspective,” Free Radical Biology and Medicine, vol. 51, no. 5, pp. 1000–1013, 2011. View at Publisher · View at Google Scholar
  184. R. Seth, S. Yang, S. Choi, M. Sabean, and E. A. Roberts, “In vitro assessment of copper-induced toxicity in the human hepatoma line, Hep G2,” Toxicology in Vitro, vol. 18, no. 4, pp. 501–509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  185. C. A. Grillo, M. A. Reigosa, and M. A. Fernández Lorenzo de Mele, “Does over-exposure to copper ions released from metallic copper induce cytotoxic and genotoxic effects on mammalian cells?” Contraception, vol. 81, no. 4, pp. 343–349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. C. Lin, J. Kang, and R. Zheng, “Oxidative stress is involved in inhibition of copper on histone acetylation in cells,” Chemico-Biological Interactions, vol. 151, no. 3, pp. 167–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  187. P. D. L. Lima, M. C. Vasconcellos, R. A. Montenegro et al., “Genotoxic and cytotoxic effects of iron sulfate in cultured human lymphocytes treated in different phases of cell cycle,” Toxicology in Vitro, vol. 22, no. 3, pp. 723–729, 2008. View at Publisher · View at Google Scholar · View at Scopus
  188. Y. M. Pu, Q. Wang, and Z. M. Qian, “Effect of iron and lipid peroxidation on development of cerebellar granule cells in vitro,” Neuroscience, vol. 89, no. 3, pp. 855–861, 1999. View at Publisher · View at Google Scholar · View at Scopus
  189. Y. Knöbel, A. Weise, M. Glei, W. Sendt, U. Claussen, and B. L. Pool-Zobel, “Ferric iron is genotoxic in non-transformed and preneoplastic human colon cells,” Food and Chemical Toxicology, vol. 45, no. 5, pp. 804–811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  190. J. A. M. Maier, C. Malpuech-Brugère, W. Zimowska, Y. Rayssiguier, and A. Mazur, “Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis,” Biochimica et Biophysica Acta, vol. 1689, no. 1, pp. 13–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  191. A. Sgambato, F. I. Wolf, B. Faraglia, and A. Cittadini, “Magnesium depletion causes growth inhibition, reduced expression of cyclin D1, and increased expression of P27Kip1 in normal but not in transformed mammary epithelial cells,” Journal of Cellular Physiology, vol. 180, no. 2, pp. 245–254, 1999. View at Publisher · View at Google Scholar
  192. D. W. Killilea and B. N. Ames, “Magnesium deficiency accelerates cellular senescence in cultured human fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 15, pp. 5768–5773, 2008. View at Publisher · View at Google Scholar · View at Scopus
  193. P. Calsou and B. Salles, “Properties of damage-dependent DNA incision by nucleotide excision repair in human cell-free extracts,” Nucleic Acids Research, vol. 22, no. 23, pp. 4937–4942, 1994. View at Scopus
  194. C. S. Hoefig, K. Renko, J. Kohrle, M. Birringer, and L. Schomburg, “Comparison of different selenocompounds with respect to nutritional value vs. toxicity using liver cells in culture,” The Journal of Nutritional Biochemistry, vol. 22, no. 10, pp. 945–955, 2011. View at Publisher · View at Google Scholar
  195. H. Zeng, M. Wu, and J. H. Botnen, “Methylselenol, a selenium metabolite, induces cell cycle arrest in G1 phase and apoptosis via the extracellular-regulated kinase 1/2 pathway and other cancer signaling genes,” Journal of Nutrition, vol. 139, no. 9, pp. 1613–1618, 2009. View at Publisher · View at Google Scholar · View at Scopus
  196. S. Cuello, S. Ramos, R. Mateos et al., “Selenium methylselenocysteine protects human hepatoma HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide,” Analytical and Bioanalytical Chemistry, vol. 389, no. 7-8, pp. 2167–2178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  197. M. H. Helmy, S. S. Ismail, H. Fayed, and E. A. El-Bassiouni, “Effect of selenium supplementation on the activities of glutathione metabolizing enzymes in human hepatoma Hep G2 cell line,” Toxicology, vol. 144, no. 1–3, pp. 57–61, 2000. View at Publisher · View at Google Scholar · View at Scopus
  198. E. Ho and B. N. Ames, “Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFκB, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 16770–16775, 2002. View at Publisher · View at Google Scholar · View at Scopus
  199. R. Sharif, P. Thomas, P. Zalewski, R. D. Graham, and M. Fenech, “The effect of zinc sulphate and zinc carnosine on genome stability and cytotoxicity in the WIL2-NS human lymphoblastoid cell line,” Mutation Research, vol. 720, no. 1-2, pp. 22–33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  200. R. Sharif, P. Thomas, P. Zalewski, and M. Fenech, “Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells,” Genes & Nutrition, vol. 7, no. 2, pp. 139–154, 2012. View at Publisher · View at Google Scholar
  201. S. Sergeant and W. T. Johnson, “Iron and copper requirements for proliferation and differentiation of a human promyelocytic leukemia cell line (HL-60),” Journal of Cellular Physiology, vol. 163, no. 3, pp. 477–485, 1995. View at Publisher · View at Google Scholar · View at Scopus
  202. F. I. Wolf, A. Torsello, S. Fasanella, and A. Cittadini, “Cell physiology of magnesium,” Molecular Aspects of Medicine, vol. 24, no. 1–3, pp. 11–26, 2003. View at Publisher · View at Google Scholar · View at Scopus
  203. B. F. Dickens, W. B. Weglicki, Y. S. Li, and I. T. Mak, “Magnesium deficiency in vitro enhances free radical-induced intracellular oxidation and cytotoxicity in endothelial cells,” FEBS Letters, vol. 311, no. 3, pp. 187–191, 1992. View at Publisher · View at Google Scholar · View at Scopus
  204. H. Martin, C. Abadie, B. Heyd, G. Mantion, L. Richert, and A. Berthelot, “N-acetylcysteine partially reverses oxidative stress and apoptosis exacerbated by Mg-deficiency culturing conditions in primary cultures of rat and human hepatocytes,” Journal of the American College of Nutrition, vol. 25, no. 5, pp. 363–369, 2006. View at Scopus
  205. Y. Yang, Z. Wu, Y. Chen et al., “Magnesium deficiency enhances hydrogen peroxide production and oxidative damage in chick embryo hepatocyte in vitro,” BioMetals, vol. 19, no. 1, pp. 71–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  206. S. Ferrè, A. Mazur, and J. A. M. Maier, “Low-magnesium induces senescent features in cultured human endothelial cells,” Magnesium Research, vol. 20, no. 1, pp. 66–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  207. W. L. McKeehan and R. G. Ham, “Calcium and magnesium ions and the regulation of multiplication in normal and transformed cells,” Nature, vol. 275, no. 5682, pp. 756–758, 1978. View at Scopus
  208. R. Sharif, P. Thomas, P. Zalewski, and M. Fenech, “The role of zinc in genomic stability,” Mutation Research, vol. 733, no. 1-2, pp. 111–121, 2012. View at Publisher · View at Google Scholar
  209. J. van der Valk, D. Brunner, K. De Smet et al., “Optimization of chemically defined cell culture media—replacing fetal bovine serum in mammalian in vitro methods,” Toxicology in Vitro, vol. 24, no. 4, pp. 1053–1063, 2010. View at Publisher · View at Google Scholar · View at Scopus
  210. X. Zheng, H. Baker, W. S. Hancock, F. Fawaz, M. McCaman, and E. Pungor Jr., “Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs,” Biotechnology Progress, vol. 22, no. 5, pp. 1294–1300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  211. A. Jacobs, T. Hoy, J. Humphrys, and P. Perera, “Iron overload in chang cell cultures: biochemical and morphological studies,” British Journal of Experimental Pathology, vol. 59, no. 5, pp. 489–498, 1978. View at Scopus