About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 604598, 6 pages
http://dx.doi.org/10.1155/2013/604598
Research Article

Genetic Dissection of New Genotypes of Drumstick Tree (Moringa oleifera Lam.) Using Random Amplified Polymorphic DNA Marker

1Food Crops Laboratory, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Received 18 January 2013; Revised 12 March 2013; Accepted 27 March 2013

Academic Editor: Kok Tat Tan

Copyright © 2013 Shamsuddeen Rufai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The knowledge of genetic diversity of tree crop is very important for breeding and improvement program for the purpose of improving the yield and quality of its produce. Genetic diversity study and analysis of genetic relationship among 20 Moringa oleifera were carried out with the aid of twelve primers from, random amplified polymorphic DNA marker. The seeds of twenty M. oleifera genotypes from various origins were collected and germinated and raised in nursery before transplanting to the field at University Agricultural Park (TPU). Genetic diversity parameter, such as Shannon's information index and expected heterozygosity, revealed the presence of high genetic divergence with value of 1.80 and 0.13 for Malaysian population and 0.30 and 0.19 for the international population, respectively. Mean of Nei's gene diversity index for the two populations was estimated to be 0.20. In addition, a dendrogram constructed, using UPGMA cluster analysis based on Nei's genetic distance, grouped the twenty M. oleifera into five distinct clusters. The study revealed a great extent of variation which is essential for successful breeding and improvement program. From this study, M. oleifera genotypes of wide genetic origin, such as T-01, T-06, M-01, and M-02, are recommended to be used as parent in future breeding program.