About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 604787, 9 pages
http://dx.doi.org/10.1155/2013/604787
Research Article

Antioxidant, Antiproliferative, and Antiangiogenesis Effects of Polyphenol-Rich Seaweed (Sargassum muticum)

1Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
2Department of Medicine & Applied Biology Research Center, Mashhad Branch, Islamic Azad University, Iran
3Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
4Department of Biology, Applied Biology Research Center, Mashhad Branch, Islamic Azad University, Iran
5Department of Microbiology and Pathology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Received 18 March 2013; Revised 18 June 2013; Accepted 23 June 2013

Academic Editor: Jozef Anneè

Copyright © 2013 Farideh Namvar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Liu, M. Heinrich, S. Myers, and S. A. Dworjanyn, “Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: a phytochemical and pharmacological review,” Journal of Ethnopharmacology, vol. 142, no. 3, pp. 591–619, 2012.
  2. M. N. A. Khan, J. S. Choi, M. C. Lee et al., “Anti-inflammatory activities of methanol extracts from various seaweed species,” Journal of Environmental Biology, vol. 29, no. 4, pp. 465–469, 2008. View at Scopus
  3. A. W. Zuercher, R. Fritsché, B. Corthésy, and A. Mercenier, “Food products and allergy development, prevention and treatment,” Current Opinion in Biotechnology, vol. 17, no. 2, pp. 198–203, 2006.
  4. R. M. Perez G., M. A. Zavala S., S. Perez G., and C. Perez G., “Antidiabetic effect of compounds isolated from plants,” Phytomedicine, vol. 5, no. 1, pp. 55–75, 1998. View at Scopus
  5. T. Nishino, A. Fukuda, T. Nagumo, M. Fujihara, and E. Kaji, “Inhibition of the generation of thrombin and factor Xa by a fucoidan from the brown seaweed Ecklonia kurome,” Thrombosis Research, vol. 96, no. 1, pp. 37–49, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Miyashita, “The carotenoid fucoxanthin from brown seaweed affects obesity,” Lipid Technology, vol. 21, no. 8-9, pp. 186–190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Mohamed, S. N. Hashim, and H. A. Rahman, “Seaweeds: a sustainable functional food for complementary and alternative therapy,” Trends in Food Science and Technology, vol. 23, no. 2, pp. 83–96, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Wada, K. Nakamura, Y. Tamai et al., “Seaweed intake and blood pressure levels in healthy pre-school Japanese children,” Nutrition Journal, vol. 10, no. 1, article 83, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. E. Ramberg, E. D. Nelson, and R. A. Sinnott, “Immunomodulatory dietary polysaccharides: a systematic review of the literature,” Nutrition Journal, vol. 9, no. 1, article 54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Harvey, “New marine derived anticancer therapeutics? A journey from the sea to clinical trials,” Marine Drugs, vol. 2, pp. 14–29, 2004.
  11. A. P. A. de Sousa, M. R. Torres, C. Pessoa et al., “In vivo growth-inhibition of Sarcoma 180 tumor by alginates from brown seaweed Sargassum vulgare,” Carbohydrate Polymers, vol. 69, no. 1, pp. 7–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Watanabe, B. S. Reddy, C. Q. Wong, and J. H. Weisburger, “Effect of dietary undegraded carrageenan on colon carcinogenesis in F344 rats treated with azoxymethane or methylnitrosourea,” Cancer Research, vol. 38, no. 12, pp. 4427–4430, 1978. View at Scopus
  13. H. Funahashi, T. Imai, T. Mase et al., “Seaweed prevents breast cancer?” Japanese Journal of Cancer Research, vol. 92, no. 5, pp. 483–487, 2001. View at Scopus
  14. F. Namvar, S. Mohamed, S. G. Fard et al., “Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction,” Food Chemistry, vol. 130, no. 2, pp. 376–382, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Peng, J. Yuan, C. Wu, and J. Wang, “Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health,” Marine Drugs, vol. 9, no. 10, pp. 1806–1828, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Maeda, T. Tsukui, T. Sashima, M. Hosokawa, and K. Miyashita, “Seaweed carotenoid, fucoxanthin, as a multi-functional nutrient,” Asia Pacific Journal of Clinical Nutrition, vol. 17, supplement 1, pp. 196–199, 2008. View at Scopus
  17. M. S. Tierney, A. K. Croft, and M. Hayes, “A review of antihypertensive and antioxidant activities in macroalgae,” Botanica Marina, vol. 53, no. 5, pp. 387–408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Ye, K. Wang, C. Zhou, J. Liu, and X. Zeng, “Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum,” Food Chemistry, vol. 111, no. 2, pp. 428–432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. P. Myers, J. O'Connor, J. H. Fitton et al., “A combined phase I and II open-label study on the Immunomodulatory effects of seaweed extract nutrient complex,” Biologics, vol. 5, pp. 45–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Ganesan, K. Matsubara, T. Ohkubo et al., “Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile,” Phytomedicine, vol. 17, no. 14, pp. 1140–1144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Folkman, “What is the evidence that tumors are angiogenesis dependent?” Journal of the National Cancer Institute, vol. 82, no. 1, pp. 4–6, 1990. View at Scopus
  22. J. Folkman, “Angiogenesis and apoptosis,” Seminars in Cancer Biology, vol. 13, no. 2, pp. 159–167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chemico-Biological Interactions, vol. 160, no. 1, pp. 1–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Ortiz, N. Romero, P. Robert et al., “Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica,” Food Chemistry, vol. 99, no. 1, pp. 98–104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Matanjun, S. Mohamed, N. M. Mustapha, K. Muhammad, and C. H. Ming, “Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo,” Journal of Applied Phycology, vol. 20, no. 4, pp. 367–373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. I. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay,” Analytical Biochemistry, vol. 15, no. 239, pp. 70–76, 1996.
  27. Y. S. Velioglu, G. Mazza, L. Gao, and B. D. Oomah, “Antioxidant activity and total phenolics in selected Ffruits, vegetables, and grain products,” Journal of Agricultural and Food Chemistry, vol. 46, no. 10, pp. 4113–4117, 1998.
  28. S. Budhiyanti and S. Raharjo, “Antioxidant activity of brown algae sargassum species extracts from the costline of java island,” American Journal of Agricultural and Biological Sciences, vol. 7, no. 3, pp. 337–346, 2012.
  29. M. L. Cornish and D. J. Garbary, “Antioxidants from macroalgae: potential applications in human health and nutrition,” Algae, vol. 25, no. 4, pp. 155–171, 2010.
  30. M. Kampa, A. Nifli, G. Notas, and E. Castanas, “Polyphenols and cancer cell growth,” Reviews of Physiology, vol. 159, pp. 79–113, 2007.
  31. H. Harada and T. K. Noro, “Selective antitumor activity in vitro from marine algae from Japan coasts,” Biological & Pharmaceutical Bulletin, vol. 20, pp. 541–546, 1997.
  32. S. L. Holdt and S. Kraan, “Bioactive compounds in seaweed: functional food applications and legislation,” Journal of Applied Phycology, vol. 23, no. 3, pp. 543–597, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Germain, E. B. Affar, D. D'Amours, V. M. Dixit, G. S. Salvesen, and G. G. Poirier, “Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7,” Journal of Biological Chemistry, vol. 274, no. 40, pp. 28379–28384, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Kwon, S. Bae, K. Kim et al., “Induction of apoptosis in HeLa cells by ethanolic extract of Corallina pilulifera,” Food Chemistry, vol. 104, no. 1, pp. 196–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Okai, K. Higashi-Okai, S.-I. Nakamura, Y. Yano, and S. Otani, “Suppressive effects of the extracts of Japanese edible seaweeds on mutagen-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) and tumor promotor-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells,” Cancer Letters, vol. 87, no. 1, pp. 25–32, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. M. T. Ale, H. Maruyama, H. Tamauchi, J. D. Mikkelsen, and A. S. Meyer, “Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro,” Marine Drugs, vol. 9, no. 12, pp. 2605–2621, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. P. F. Dias, J. M. Siqueira Jr., L. F. Vendruscolo et al., “Antiangiogenic and antitumoral properties of a polysaccharide isolated from the seaweed Sargassum stenophyllum,” Cancer Chemotherapy and Pharmacology, vol. 56, no. 4, pp. 436–446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Sugawara, K. Matsubara, R. Akagi, M. Mori, and T. Hirata, “Antiangiogenic activity of brown algae fucoxanthin and its deacetylated product, fucoxanthinol,” Journal of Agricultural and Food Chemistry, vol. 54, no. 26, pp. 9805–9810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Ganesan, K. Matsubara, T. Ohkubo et al., “Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile,” Phytomedicine, vol. 17, no. 14, pp. 1140–1144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Liu, J. Wang, A. K. Chang et al., “Fucoidan extract derived from Undaria pinnatifida inhibits angiogenesis by human umbilical vein endothelial cells. Phytomedicine?” International Journal of Phytotherapy and Phytopharmacology, vol. 19, no. 8-9, pp. 797–803, 2012.
  41. Q. Yu, J. Yan, S. Wang et al., “Antiangiogenic effects of GFP08, an agaran-type polysaccharide isolated from Grateloupia filicina,” Glycobiology, vol. 22, no. 10, pp. 1343–1352, 2012.
  42. L. Fini, E. Hotchkiss, V. Fogliano et al., “Chemopreventive properties of pinoresinol-rich olive oil involve a selective activation of the ATM-p53 cascade in colon cancer cell lines,” Carcinogenesis, vol. 29, no. 1, pp. 139–146, 2008. View at Publisher · View at Google Scholar · View at Scopus