About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 607351, 11 pages
http://dx.doi.org/10.1155/2013/607351
Research Article

Novel Poly(L-lactide-co-ε-caprolactone) Matrices Obtained with the Use of Zr[Acac]4 as Nontoxic Initiator for Long-Term Release of Immunosuppressive Drugs

1Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, 41-819 Zabrze, Poland
2Department of Biopharmacy, School of Pharmacy, Medical University of Silesia, Narcyzow 1, 41-200 Sosnowiec, Poland
3Institut Europeen des Membranes, UMR CNRS 5635, Universite Montpellier 2, Place Eugene Bataillon, 34095 Montpellier, France
4Jan Dlugosz University in Czestochowa, Institute of Chemistry, Environmental Protection and Biotechnology, Armii Krajowej 13, 42-100 Czestochowa, Poland

Received 26 April 2013; Accepted 16 August 2013

Academic Editor: Eder Lilia Romero

Copyright © 2013 Katarzyna Jelonek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Li and M. Vert, “Biodegradable polymers: polyesters,” in Encyclopedia of Controlled Drug Delivery, E. Mathiowitz, Ed., vol. 1, pp. 71–93, John Wiley & Sons, New York, NY, USA, 1999.
  2. K. van de Velde and P. Kiekens, “Biopolymers: overview of several properties and consequences on their applications,” Polymer Testing, vol. 21, no. 4, pp. 433–442, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Pillai and R. Panchagnula, “Polymers in drug delivery,” Current Opinion in Chemical Biology, vol. 5, no. 4, pp. 447–451, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. J. H. An, H. S. Kim, D. J. Chung, D. S. Lee, and S. Kim, “Thermal behaviour of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) tri-block copolymers,” Journal of Materials Science, vol. 36, no. 3, pp. 715–722, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. U. Edlund and A. C. Albertsson, “Degradable polymer microspheres for controlled drug delivery,” in Degradable Aliphatic Polyesters, A. C. Albertsson, Ed., pp. 67–113, Springer, Berlin, UK, 2002.
  6. K. M. Stridsberg, M. Ryner, and A. C. Albertsson, “Controlled ring-opening polymerization: polymers with designed macromolecular architecture,” in Degradable Aliphatic Polyester, A. C. Albertsson, Ed., pp. 40–67, Springer, Berlin, UK, 2002.
  7. R. Chandra and R. Rustgi, “Biodegradable polymers,” Progress in Polymer Science, vol. 23, no. 7, pp. 1273–1335, 1998. View at Scopus
  8. H. Sun, L. Mei, C. Song, X. Cui, and P. Wang, “The in vivo degradation, absorption and excretion of PCL-based implant,” Biomaterials, vol. 27, no. 9, pp. 1735–1740, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. V. R. Sinha, K. Bansal, R. Kaushik, R. Kumria, and A. Trehan, “Poly-ε-caprolactone microspheres and nanospheres: an overview,” International Journal of Pharmaceutics, vol. 278, no. 1, pp. 1–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Li, K. J. Zhu, J. X. Zhang et al., “In vitro and in vivo studies of cyclosporin A-loaded microspheres based on copolymers of lactide and ε-caprolactone: comparison with conventional PLGA microspheres,” International Journal of Pharmaceutics, vol. 295, no. 1-2, pp. 67–76, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Carmen Varela, M. Guzmán, J. Molpeceres, M. Del Rosario Aberturas, D. Rodríguez-Puyol, and M. Rodríguez-Puyol, “Cyclosporine-loaded polycaprolactone nanoparticles: immunosuppression and nephrotoxicity in rats,” European Journal of Pharmaceutical Sciences, vol. 12, no. 4, pp. 471–478, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Montazeri Aliabadi, D. R. Brocks, and A. Lavasanifar, “Polymeric micelles for the solubilization and delivery of cyclosporine A: pharmacokinetics and biodistribution,” Biomaterials, vol. 26, no. 35, pp. 7251–7259, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Alexis, S. S. Venkatraman, S. K. Rath, and F. Boey, “In vitro study of release mechanisms of paclitaxel and rapamycin from drug-incorporated biodegradable stent matrices,” Journal of Controlled Release, vol. 98, no. 1, pp. 67–74, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. O. Marx and A. R. Marks, “Bench to bedside: the development of rapamycin and its application to stent restenosis,” Circulation, vol. 104, no. 8, pp. 852–855, 2001. View at Scopus
  15. Z. Wei, L. Liu, C. Qu, and M. Qi, “Microstructure analysis and thermal properties of l-lactide/ε-caprolactone copolymers obtained with magnesium octoate,” Polymer, vol. 50, no. 6, pp. 1423–1429, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. F. McDonald, J. G. Lyons, L. M. Geever, and C. L. Higginbotham, “In vitro degradation and drug release from polymer blends based on poly(dl-lactide), poly(l-lactide-glycolide) and poly(ε-caprolactone),” Journal of Materials Science, vol. 45, no. 5, pp. 1284–1292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Kasperczyk and M. Bero, “Coordination polymerization of lactides, 2. Microstructure determination of poly[(L,L-lactide)-co-(ε-caprolactone)] with 13C nuclear magnetic resonance spectroscopy,” Macromolecular Chemistry and Physics, vol. 192, pp. 1777–1787, 1991. View at Publisher · View at Google Scholar
  18. P. Dobrzyński, “Initiation process of L-lactide polymerization carried out with zirconium(IV) acetylacetonate,” Journal of Polymer Science A, vol. 42, no. 8, pp. 1886–1900, 2004. View at Publisher · View at Google Scholar
  19. B. Buntner, M. Nowak, J. Kasperczyk et al., “The application of microspheres from the copolymers of lactide and ε-caprolactone to the controlled release of steroids,” Journal of Controlled Release, vol. 56, no. 1-3, pp. 159–167, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Buntner, M. Nowak, M. Bero, P. Dobrzyński, and J. Kasperczyk, “Controlled release of 17β-estradiol from D, L-lactide/ε-caprolactone copolymers,” Journal of Bioactive and Compatible Polymers, vol. 11, no. 2, pp. 110–120, 1996.
  21. J. Kasperczyk, K. Jelonek, P. Dobrzyñski, and B. Jarz, “The influence of copolymer chain microstructure on cyclosporine a (CyA) and Sirolimus prolonged and sustained release from PLA/TMC and PLA/PCL matrices,” Journal of Controlled Release, vol. 116, no. 2, pp. e5–e6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Jelonek, J. Kasperczyk, S. Li, P. Dobrzynski, and B. Jarzabek, “Controlled poly(l-lactide-co-trimethylene carbonate) delivery system of cyclosporine A and rapamycine—the effect of copolymer chain microstructure on drug release rate,” International Journal of Pharmaceutics, vol. 414, no. 1-2, pp. 203–209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Kasperczyk, K. Jelonek, K. Gebarowska, P. Dobrzyński, and A. Smola, “Tailoringthe PLATMC chain microstructure for stable cyclosporine A release,” Journal of Controlled Release, vol. 152, pp. e42–e44, 2011. View at Publisher · View at Google Scholar
  24. R. Gref, P. Quellec, A. Sanchez, P. Calvo, E. Dellacherie, and M. J. Alonso, “Development and characterization of CyA-loaded poly(lactic acid)-poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 51, no. 2, pp. 111–118, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Katayama, R. Tanaka, Y. Ohno, C. Ueda, T. Houjou, and K. Takada, “Implantable slow release cyclosporin A (CYA) delivery system to thoracic lymph duct,” International Journal of Pharmaceutics, vol. 115, no. 1, pp. 87–93, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Dobrzynski, S. Li, J. Kasperczyk, M. Bero, F. Gasc, and M. Vert, “Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and ε-caprolactone—part 1: synthesis and characterization,” Biomacromolecules, vol. 6, no. 1, pp. 483–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Amini and A. Ahmadiani, “Simple determination of cyclosporine in human whole blood by high-performance liquid chromatography,” Journal of Chromatography B, vol. 795, no. 2, pp. 209–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. K. L. Napoli, “A practical guide to the analysis of sirolimus using high-performance liquid chromatography with ultraviolet detection,” Clinical Therapeutics, vol. 22, pp. B14–B24, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. J. I. Luengo, D. S. Yamashita, D. Dunnington et al., “Structure-activity studies of rapamycin analogs: evidence that the C-7 methoxy group is part of the effector domain and positioned at the FKBP12-FRAP interface,” Chemistry and Biology, vol. 2, no. 7, pp. 471–481, 1995. View at Scopus
  30. Y. Ran, L. Zhao, Q. Xu, and S. H. Yalkowsky, “Solubilization of cyclosporin A,” AAPS PharmSciTech, vol. 2, no. 1, article 2, 2001. View at Scopus
  31. S. M. Li, J. L. Espartero, P. Foch, and M. Vert, “Structural characterization and hydrolytic degradation of a Zn metal initiated copolymer of L-lactide and ε-caprolactone,” Journal of Biomaterials Science, Polymer Edition, vol. 8, no. 3, pp. 165–187, 1996. View at Scopus
  32. J. Kasperczyk and M. Bero, “Coordination polymerization of lactides, 4a. The role of transesterification in the copolymerization of L, L-lactide and e-caprolactone,” Macromolecular Chemistry and Physics, vol. 194, pp. 913–925, 1993. View at Publisher · View at Google Scholar
  33. T. Urata, K. Arimori, and M. Nakano, “Modification of release rates of cyclosporin A from polyl(L-lactic acid) microspheres by fatty acid esters and in-vivo evaluation of the microspheres,” Journal of Controlled Release, vol. 58, no. 2, pp. 133–141, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Chacón, J. Molpeceres, L. Berges, M. Guzmán, and M. R. Aberturas, “Stability and freeze-drying of cyclosporine loaded poly(D,L-lactide-glycolide) carriers,” European Journal of Pharmaceutical Sciences, vol. 8, no. 2, pp. 99–107, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. J.-W. Lee, J. A. Gardella Jr., W. Hicks Jr., R. Hard, and F. V. Bright, “Analysis of the initial burst of drug release coupled with polymer surface degradation,” Pharmaceutical Research, vol. 20, no. 2, pp. 149–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. C. J. Pan, J. J. Tang, Y. J. Weng, J. Wang, and N. Huang, “Preparation and characterization of rapamycin-loaded PLGA coating stent,” Journal of Materials Science, vol. 18, no. 11, pp. 2193–2198, 2007. View at Publisher · View at Google Scholar
  37. K. Sternberg, S. Kramer, C. Nischan et al., “In vitro study of drug-eluting stent coatings based on poly(L-lactide) incorporating cyclosporine A - Drug release, polymer degradation and mechanical integrity,” Journal of Materials Science, vol. 18, no. 7, pp. 1423–1432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Lallemand, O. Felt-Baeyens, K. Besseghir, F. Behar-Cohen, and R. Gurny, “Cyclosporine A delivery to the eye: a pharmaceutical challenge,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 56, no. 3, pp. 307–318, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Pamula, P. Dobrzynski, B. Szot et al., “Cytocompatibility of aliphatic polyesters—in vitro study on fibroblasts and macrophages,” Journal of Biomedical Materials Research A, vol. 87, no. 2, pp. 524–535, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Pamula, L. Bacakova, E. Filova et al., “The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 1, pp. 425–435, 2008. View at Publisher · View at Google Scholar · View at Scopus