About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 609289, 14 pages
Research Article

Computational Elucidation of Structural Basis for Ligand Binding with Leishmania donovani Adenosine Kinase

1Biomedical Informatics Centre, Rajendra Memorial Research Institute of Medical Science, Patna 800007, India
2Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India

Received 30 March 2013; Revised 17 June 2013; Accepted 18 June 2013

Academic Editor: Ali Ouaissi

Copyright © 2013 Rajiv K. Kar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Enzyme adenosine kinase is responsible for phosphorylation of adenosine to AMP and is crucial for parasites which are purine auxotrophs. The present study describes development of robust homology model of Leishmania donovani adenosine kinase to forecast interaction phenomenon with inhibitory molecules using structure-based drug designing strategy. Docking calculation using reported organic small molecules and natural products revealed key active site residues such as Arg131 and Asp16 for ligand binding, which is consistent with previous studies. Molecular dynamics simulation of ligand protein complex revealed the importance of hydrogen bonding with active site residues and solvent molecules, which may be crucial for successful development of drug candidates. Precise role of Phe168 residue in the active site was elucidated in this report that provided stability to ligand-protein complex via aromatic-π contacts. Overall, the present study is believed to provide valuable information to design a new compound with improved activity for antileishmanial therapeutics development.