About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 609289, 14 pages
http://dx.doi.org/10.1155/2013/609289
Research Article

Computational Elucidation of Structural Basis for Ligand Binding with Leishmania donovani Adenosine Kinase

1Biomedical Informatics Centre, Rajendra Memorial Research Institute of Medical Science, Patna 800007, India
2Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India

Received 30 March 2013; Revised 17 June 2013; Accepted 18 June 2013

Academic Editor: Ali Ouaissi

Copyright © 2013 Rajiv K. Kar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. The World Health Report on leishmaniasis, http://www.who.int/leishmaniasis/en/.
  2. P. K. Sinha, S. Bimal, S. K. Singh, K. Pandey, D. N. Gangopadhyay, and S. K. Bhattacharya, “Pre- & post-treatment evaluation of immunological features in Indian visceral leishmaniasis (VL) patients with HIV co-infection,” Indian Journal of Medical Research, vol. 123, no. 3, pp. 197–202, 2006. View at Scopus
  3. F. Chappuis, S. Sundar, A. Hailu et al., “Visceral leishmaniasis: what are the needs for diagnosis, treatment and control?” Nature Reviews Microbiology, vol. 5, no. 11, pp. 873–882, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. L. Croft, M. P. Barrett, and J. A. Urbina, “Chemotherapy of trypanosomiases and leishmaniasis,” Trends in Parasitology, vol. 21, no. 11, pp. 508–512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Singh and R. Sivakumar, “Challenges and new discoveries in the treatment of leishmaniasis,” Journal of Infection and Chemotherapy, vol. 10, no. 6, pp. 307–315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Park and R. S. Gupta, “Adenosine kinase and ribokinase—the RK family of proteins,” Cellular and Molecular Life Sciences, vol. 65, no. 18, pp. 2875–2896, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. V. Tuttle and T. A. Krenitsky, “Purine phosphoribosyltransferases from Leishmania donovani,” Journal of Biological Chemistry, vol. 255, no. 3, pp. 909–916, 1980. View at Scopus
  8. A. K. Datta, R. Datta, and B. Sen, “Antiparasitic chemotherapy: tinkering with the purine salvage pathway,” Advances in Experimental Medicine and Biology, vol. 625, pp. 116–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. L. Looker, R. L. Berens, and J. J. Marr, “Purine metabolism in Leishmania donovani amastigotes and promastigotes,” Molecular and Biochemical Parasitology, vol. 9, no. 1, pp. 15–28, 1983. View at Scopus
  10. A. K. Datta, D. Bhaumik, and R. Chatterjee, “Isolation and characterization of adenosine kinase from Leishmania donovani,” Journal of Biological Chemistry, vol. 262, no. 12, pp. 5515–5521, 1987. View at Scopus
  11. M. Berg, P. van der Veken, A. Goeminne, A. Haemers, and K. Augustyns, “Inhibitors of the purine salvage pathway: a valuable approach for antiprotozoal chemotherapy?” Current Medicinal Chemistry, vol. 17, no. 23, pp. 2456–2481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Vodnala, A. Fijolek, R. Rofougaran, M. Mosimann, P. Mäser, and A. Hofer, “Adenosine kinase mediates high affinity adenosine salvage in Trypanosoma brucei,” Journal of Biological Chemistry, vol. 283, no. 9, pp. 5380–5388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. K. M. Sinha, M. Ghosh, I. Das, and A. K. Datta, “Molecular cloning and expression of adenosine kinase from Leishmania donovani: identification of unconventional P-loop motif,” Biochemical Journal, vol. 339, no. 3, pp. 667–673, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Matulenko, E. S. Paight, R. R. Frey et al., “4-Amino-5-aryl-6-arylethynylpyrimidines: structure-activity relationships of non-nucleoside adenosine kinase inhibitors,” Bioorganic and Medicinal Chemistry, vol. 15, no. 4, pp. 1586–1605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. B. G. Ugarkar, J. M. DaRe, J. J. Kopcho et al., “Adenosine kinase inhibitors. 1. Synthesis, enzyme inhibition, and antiseizure activity of 5-iodotubercidin analogues,” Journal of Medicinal Chemistry, vol. 43, no. 15, pp. 2883–2893, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Matulenko, C.-H. Lee, M. Jiang et al., “5-(3-Bromophenyl)-7-(6-morpholin-4-ylpyridin-3-yl)pyrido[2,3-d] pyrimidin-4-ylamine: structure-activity relationships of 7-substituted heteroaryl analogs as non-nucleoside adenosine kinase inhibitors,” Bioorganic and Medicinal Chemistry, vol. 13, no. 11, pp. 3705–3720, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Caballero, M. Fernández, and F. D. González-Nilo, “A CoMSIA study on the adenosine kinase inhibition of pyrrolo[2,3-d]pyrimidine nucleoside analogues,” Bioorganic and Medicinal Chemistry, vol. 16, no. 9, pp. 5103–5108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. F. F. da Cunha, D. T. Mancini, and T. C. Ramalho, “Molecular modeling of the Toxoplasma gondii adenosine kinase inhibitors,” Medicinal Chemistry Research, vol. 21, no. 5, pp. 590–600, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Kuettel, J. Greenwald, D. Kostrewa, S. Ahmed, L. Scapozza, and R. Perozzo, “Crystal structures of T. b. rhodesiense adenosine kinase complexed with inhibitor and activator: implications for catalysis and hyperactivation,” PLoS Neglected Tropical Diseases, vol. 5, no. 5, Article ID e1164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Arnold, L. Bordoli, J. Kopp, and T. Schwede, “The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling,” Bioinformatics, vol. 22, no. 2, pp. 195–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Peng and J. Xu, “Raptorx: exploiting structure information for protein alignment by statistical inference,” Proteins, vol. 79, no. 10, pp. 161–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Nielsen, C. Lundegaard, O. Lund, and T. N. Petersen, “CPHmodels-3.0-remote homology modeling using structure-guided sequence profiles,” Nucleic Acids Research, vol. 38, no. 2, pp. W576–W581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Söding, A. Biegert, and A. N. Lupas, “The HHpred interactive server for protein homology detection and structure prediction,” Nucleic Acids Research, vol. 33, no. 2, pp. W244–W248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Eswar, B. Webb, M. A. Marti-Renom et al., “Comparative protein structure modeling using MODELLER,” Current Protocols in Protein Science, chapter 2, unit 2.9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Luthy, J. U. Bowie, and D. Eisenberg, “Assesment of protein models with three-dimensional profiles,” Nature, vol. 356, no. 6364, pp. 83–85, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thornton, “PROCHECK: a program to check the stereochemical quality of protein structures,” Journal of Applied Crystallography, vol. 26, pp. 283–291, 1993.
  28. V. Z. Spassov, P. K. Flook, and L. Yan, “LOOPER: a molecular mechanics-based algorithm for protein loop prediction,” Protein Engineering, Design and Selection, vol. 21, no. 2, pp. 91–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Colovos and T. O. Yeates, “Verification of protein structures: patterns of nonbonded atomic interactions,” Protein Science, vol. 2, no. 9, pp. 1511–1519, 1993. View at Scopus
  30. M. Wiederstein and M. J. Sippl, “ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins,” Nucleic Acids Research, vol. 35, pp. W407–W410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Maiti, G. H. Van Domselaar, H. Zhang, and D. S. Wishart, “SuperPose: a simple server for sophisticated structural superposition,” Nucleic Acids Research, vol. 32, pp. W590–W594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. W. N. Setzer and I. V. Ogungbe, “In-silico investigation of antitrypanosomal Phytochemicals from Nigerian medicinal plants,” Plos Neglected Tropical Diseases, vol. 6, no. 7, Article ID e1727, 2012.
  33. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, “GROMACS: fast, flexible, and free,” Journal of Computational Chemistry, vol. 26, no. 16, pp. 1701–1718, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, “The missing term in effective pair potentials,” Journal of Physical Chemistry, vol. 91, no. 24, pp. 6269–6271, 1987. View at Scopus
  35. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Dinola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” The Journal of Chemical Physics, vol. 81, no. 8, pp. 3684–3690, 1984. View at Scopus
  36. R. Martoňák, A. Laio, and M. Parrinello, “Predicting crystal structures: the Parrinello-Rahman method revisited,” Physical Review Letters, vol. 90, no. 7, Article ID 75503, 4 pages, 2003. View at Scopus
  37. J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, “Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes,” Journal of Computational Physics, vol. 23, no. 3, pp. 327–341, 1977. View at Scopus
  38. P. P. Ewald, “Die Berechnung optischer und elektrostatischer Gitterpotentiale,” Annals of Physics, vol. 369, pp. 253–287, 1921.
  39. A. T. R. Laurie and R. M. Jackson, “Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites,” Bioinformatics, vol. 21, no. 9, pp. 1908–1916, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. Schrödinger Suite 2012 Schrِdinger Suite, Epik Version 2.2, Schrِdinger, LLC, New York, NY, USA, 2012.
  41. Schrödinger Suite 2012 Schrِdinger Suite, Impact Version 5.7, Schrِdinger, LLC, New York, NY, USA, 2012.
  42. Schrödinger Suite 2012 Schrِdinger Suite, Prime Version 2.3, Schrِdinger, LLC, New York, NY, USA, 2012.
  43. R. K. Kar, P. Suryadevara, B. R. Sahoo, G. C. Sahoo, M. R. Dikhit, and P. Das, “Exploring novel KDR inhibitors based on pharmaco-informatics methodology,” SAR and QSAR in Environmental Research, vol. 24, no. 3, pp. 215–234, 2013.
  44. R. A. Friesner, R. B. Murphy, M. P. Repasky et al., “Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes,” Journal of Medicinal Chemistry, vol. 49, no. 21, pp. 6177–6196, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. M. P. Repasky, M. Shelley, and R. A. Friesner, “Flexible ligand docking with Glide,” Current Protocols in Bioinformatics, chapter 8, unit 8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. A. Miteva, W. H. Lee, M. O. Montes, and B. O. Villoutreix, “Fast structure-based virtual ligand screening combining FRED, DOCK, and surflex,” Journal of Medicinal Chemistry, vol. 48, no. 19, pp. 6012–6022, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Kramer, M. Rarey, and T. Lengauer, “Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking,” Proteins-Structure Function and Genetics, vol. 37, pp. 228–241, 1999.
  48. G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, “Development and validation of a genetic algorithm for flexible docking,” Journal of Molecular Biology, vol. 267, no. 3, pp. 727–748, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. A. W. Schüttelkopf and D. M. F. Van Aalten, “PRODRG: a tool for high-throughput crystallography of protein-ligand complexes,” Acta Crystallographica D, vol. 60, no. 8, pp. 1355–1363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Ghosh and A. K. Datta, “Probing the function(s) of active-site arginine residue in Leishmania donovani adenosine kinase,” Biochemical Journal, vol. 298, no. 2, pp. 295–301, 1994. View at Scopus
  51. M. C. A. Costa, L. E. S. Barata, and Y. Takahata, “Conformation of neolignans that bind to the arginine residue in adenosine-kinase from Leishmania donovani,” Journal of Molecular Structure, vol. 464, no. 1–3, pp. 281–287, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Datta, I. Das, B. Sen et al., “Mutational analysis of the active-site residues crucial for catalytic activity of adenosine kinase from Leishmania donovani,” Biochemical Journal, vol. 387, no. 3, pp. 591–600, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Datta, I. Das, B. Sen et al., “Homology-model-guided site-specific mutagenesis reveals the mechanisms of substrate binding and product-regulation of adenosine kinase from Leishmania donovani,” Biochemical Journal, vol. 394, no. 1, pp. 35–42, 2006. View at Publisher · View at Google Scholar · View at Scopus