About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 612032, 6 pages
http://dx.doi.org/10.1155/2013/612032
Review Article

NGAL and Metabolomics: The Single Biomarker to Reveal the Metabolome Alterations in Kidney Injury

1Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, University of Cagliari, Via Ospedale 119, 09124 Cagliari, Italy
2Department of Laboratory Medicine, University Hospital San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy

Received 15 December 2012; Accepted 6 March 2013

Academic Editor: Andrew St. John

Copyright © 2013 A. Noto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Frank and R. Hargreaves, “Clinical biomarkers in drug discovery and development,” Nature Reviews Drug Discovery, vol. 2, no. 7, pp. 566–580, 2003. View at Scopus
  2. M. Mussap, A. Noto, F. Cibecchini, and V. Fanos, “Emerging biomarker in neonatal sepsis,” Drugs of the Future, vol. 37, no. 5, p. 353, 2012.
  3. N. Paragas, A. Qiu, Q. Zhang et al., “The Ngal reporter mouse detects the response of the kidney to injury in real time,” Nature Medicine, vol. 17, no. 2, pp. 216–222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. V. Bonventre, V. S. Vaidya, R. Schmouder, P. Feig, and F. Dieterle, “Next-generation biomarkers for detecting kidney toxicity,” Nature Biotechnology, vol. 28, no. 5, pp. 436–440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. R. G. Fassett, S. K. Venuthurupalli, G. C. Gobe, J. S. Coombes, M. A. Cooper, and W. E. Hoy, “Biomarkers in chronic kidney disease: a review,” Kidney International, vol. 80, pp. 806–821, 2011.
  6. P. Devarajan, “Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury,” Biomarkers in Medicine, vol. 4, no. 2, pp. 265–280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Kjeldsen, A. H. Johnsen, H. Sengelov, and N. Borregaard, “Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase,” Journal of Biological Chemistry, vol. 268, no. 14, pp. 10425–10432, 1993. View at Scopus
  8. J. Mishra, M. A. Qing, A. Prada et al., “Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury,” Journal of the American Society of Nephrology, vol. 14, no. 10, pp. 2534–2543, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. B. Cowland and N. Borregaard, “Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans,” Genomics, vol. 45, no. 1, pp. 17–23, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Portilla, C. Dent, T. Sugaya et al., “Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery,” Kidney International, vol. 73, no. 4, pp. 465–472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Kuwabara, K. Mori, M. Mukoyama et al., “Urinary neutrophil gelatinase-associated lipocalin levels reflect damage to glomeruli, proximal tubules, and distal nephrons,” Kidney International, vol. 75, no. 3, pp. 285–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. M. Bagshaw, M. Bennett, M. Haase et al., “Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness,” Intensive Care Medicine, vol. 36, no. 3, pp. 452–461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Viau, K. El Karoui, D. Laouari et al., “Lipocalin 2 is essential for chronic kidney disease progression in mice and humans,” Journal of Clinical Investigation, vol. 120, no. 11, pp. 4065–4076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. F. C. Grenier, S. Ali, H. Syed et al., “Evaluation of the ARCHITECT urine NGAL assay: assay performance, specimen handling requirements and biological variability,” Clinical Biochemistry, vol. 43, no. 6, pp. 615–620, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Cai, J. Rubin, W. Han, P. Venge, and S. Xu, “The origin of multiple molecular forms in urine of HNL/NGAL,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 12, pp. 2229–2235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Hatipoglu, E. Sevketoglu, A. Gedikbasi, et al., “Urinary MMP-9/NGAL complex in children with acute cystitis,” Pediatric Nephrology, vol. 26, pp. 1263–1268, 2011.
  17. T. L. Nickolas, C. S. Forster, M. E. Sise, et al., “NGAL (Lcn2) monomer is associated with tubulointerstitial damage in chronic kidney disease,” Kidney International, vol. 82, pp. 718–722, 2012.
  18. S. G. Oliver, M. K. Winson, D. B. Kell, and F. Baganz, “Systematic functional analysis of the yeast genome,” Trends in Biotechnology, vol. 16, no. 9, pp. 373–378, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. D. S. Wishart, D. Tzur, C. Knox et al., “HMDB: The human metabolome database,” Nucleic Acids Research, vol. 35, no. 1, pp. D521–D526, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Wishart, “Applications of metabolomics in nutritional science,” Human Metabolome Project, 2008. View at Scopus
  21. L. Atzori, J. L. Griffin, A. Noto, and V. Fanos, “Metabolomics: a new approach to drug delivery in perinatology,” Current Medicinal Chemistry, vol. 19, pp. 4654–4661, 2012.
  22. F. C. Marincola, A. Noto, P. Caboni, et al., “A metabolomic study of preterm human and formula milk by high resolution NMR and GC/MS analysis: preliminary results,” The Journal of Maternal-Fetal & Neonatal Medicine, vol. 25, pp. 62–67, 2012.
  23. S. Collino, F. P. Martin, and S. Rezzi, “Clinical Metabolomics paves the way towards future healthcare strategies,” British Journal of Clinical Pharmacology, vol. 75, no. 3, pp. 619–629, 2012. View at Publisher · View at Google Scholar
  24. J. C. Lindon, J. K. Nicholson, E. Holmes, and J. R. Everett, “Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids,” Concepts in Magnetic Resonance, vol. 12, no. 5, pp. 289–320, 2000. View at Scopus
  25. D. I. Ellis, W. B. Dunn, J. L. Griffin, J. W. Allwood, and R. Goodacre, “Metabolic fingerprinting as a diagnostic tool,” Pharmacogenomics, vol. 8, no. 9, pp. 1243–1266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. U. Christians, J. Albuisson, and J. Klawitter, “The role of metabolomics in the study of kidney diseases and in the development of diagnostic tools,” in Biomarkers in Kidney Disease, C. L. Edelstein, Ed., pp. 39–100, Elsevier Academic Press, San Francisco, Calif, USA, 2011.
  27. M. Oldiges, S. Lütz, S. Pflug, K. Schroer, N. Stein, and C. Wiendahl, “Metabolomics: current state and evolving methodologies and tools,” Applied Microbiology and Biotechnology, vol. 76, no. 3, pp. 495–511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. W. J. Griffiths and Y. Wang, “Mass spectrometry: from proteomics to metabolomics and lipidomics,” Chemical Society Reviews, vol. 38, no. 7, pp. 1882–1896, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. S. Wishart, C. Knox, A. C. Guo et al., “HMDB: a knowledgebase for the human metabolome,” Nucleic Acids Research, vol. 37, no. 1, pp. D603–D610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. M. Fonville, A. D. Maheir, M. Coen, E. Holmes, J. C. Lindon, and J. K. Nicholson, “Evaluation of full-resolution J-resolved1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification,” Analytical Chemistry, vol. 82, no. 5, pp. 1811–1821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Pan and D. Raftery, “Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics,” Analytical and Bioanalytical Chemistry, vol. 387, no. 2, pp. 525–527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. K. K. Pasikanti, P. C. Ho, and E. C. Y. Chan, “Gas chromatography/mass spectrometry in metabolic profiling of biological fluids,” Journal of Chromatography B, vol. 871, no. 2, pp. 202–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Y. Xu, W. H. Schaefer, and Q. Xu, “Metabolomics in pharmaceutical research and development: metabolites, mechanisms and pathways,” Current Opinion in Drug Discovery and Development, vol. 12, no. 1, pp. 40–52, 2009. View at Scopus
  34. L. Atzori, R. Antonucci, L. Barberini et al., “1H NMR-based metabolic profiling of urine from children with nephrouropathies,” Frontiers in Bioscience, vol. 2, pp. 725–732, 2010. View at Scopus
  35. V. Fanos, R. Antonucci, M. Zaffanello, and M. Mussap, “Nenatal drug induced nephrotoxicity: old and next generation biomarkers for early detection and management of neonatal dug-induced nephrotoxicity, with special emphasis on ungal and on metabolomics,” Current Medicinal Chemistry, vol. 19, pp. 4595–4605, 2012.
  36. L. Atzori, M. Mussap, A. Noto, et al., “Clinical metabolomics and urinary NGAL for the early prediction of chronic kidney disease in healthy adults born ELBW,” The Journal of Maternal-Fetal & Neonatal Medicine, vol. 24, supplement 2, pp. 40–43, 2011.