About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 612369, 10 pages
http://dx.doi.org/10.1155/2013/612369
Review Article

Mitochondria and Cancer: Past, Present, and Future

1Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON, Canada L8V 5C2
2Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8N 3Z5
3Mitomics Inc., Bioincubator Suite, The Medical School, New Castle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
4Cipher Systems, Annapolis, MD 21401, USA
5Mitomics Inc., 290 Munro Street, Suite 1000, Thunder Bay, ON, Canada P7A 7T1

Received 30 October 2012; Accepted 13 December 2012

Academic Editor: George Perry

Copyright © 2013 M. L. Verschoor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. Lehninger, The Mitochondrion- Molecular Basis of Structure and Function, 1965.
  2. L. Ernster and G. Schatz, “Mitochondria: a historical review,” Journal of Cell Biology, vol. 91, no. 3, part 2, pp. 227s–255s, 1981. View at Scopus
  3. P. Siekevitz, “Powerhouse of the cell,” Scientific American, no. 1, pp. 131–140, 1957.
  4. P. P. Slonimski and B. Ephrussi, “Action de l'acriflavine sur les levures. V. Le systeme des cytochromes des mutants ‘petite colonie’,” Annales de l'Institut Pasteur, vol. 77, pp. 47–63, 1949.
  5. M. M. Nass and S. Nass, “Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions,” Journal of Cell Biology, vol. 19, pp. 593–629, 1963.
  6. G. Schatz and J. Klima, “Triphosphopyridine nucleotide: cytochrome C reductase of Saccharomyces Cerevisiae a ‘microsomal’ enzyme,” Biochimica et Biophysica Acta, vol. 81, no. 3, pp. 448–461, 1964. View at Scopus
  7. S. Anderson, A. T. Bankier, B. G. Barrell, et al., “Sequence and organization of the human mitochondrial genome,” Nature, vol. 290, no. 5806, pp. 457–465, 1981. View at Scopus
  8. R. M. Andrews, I. Kubacka, P. F. Chinnery, R. N. Lightowlers, D. M. Turnbull, and N. Howell, “Reanalysis and revision of the cambridge reference sequence for human mitochondrial DNA,” Nature Genetics, vol. 23, no. 2, p. 147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. D. C. Wallace, G. Singh, M. T. Lott et al., “Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy,” Science, vol. 242, no. 4884, pp. 1427–1430, 1988. View at Scopus
  10. I. J. Holt, A. E. Harding, and J. A. Morgan-Hughes, “Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies,” Nature, vol. 331, no. 6158, pp. 717–719, 1988. View at Scopus
  11. L. C. Greaves, A. K. Reeve, R. W. Taylor, and D. M. Turnbull, “Mitochondrial DNA and disease,” The Journal of Pathology, vol. 226, no. 2, pp. 274–286, 2012.
  12. S. E. Durham, K. J. Krishnan, J. Betts, and M. A. Birch-Machin, “Mitochondrial DNA damage in non-melanoma skin cancer,” British Journal of Cancer, vol. 88, no. 1, pp. 90–95, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Warburg, K. Posener, and E. Negelein, “Ueber den Stoffwechsel der Tumoren,” Biochemische Zeitschrift, vol. 152, pp. 319–344, 1924.
  14. O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp. 309–314, 1956. View at Scopus
  15. J. C. Thrash, A. Boyd, M. J. Huggett, et al., “Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade,” Scientific Reports, vol. 1, article 13, 2011.
  16. Y. Chen, R. Cairns, I. Papandreou, A. Koong, and N. C. Denko, “Oxygen consumption can regulate the growth of tumors, a new perspective on the Warburg effect,” PLoS One, vol. 4, no. 9, Article ID e7033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Weinberg, R. Hamanaka, W. W. Wheaton et al., “Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 19, pp. 8788–8793, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. S. Gambhir, “Molecular imaging of cancer with positron emission tomography,” Nature Reviews Cancer, vol. 2, no. 9, pp. 683–693, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. P. S. Ward and C. B. Thompson, “Metabolic reprogramming: a cancer hallmark even warburg did not anticipate,” Cancer Cell, vol. 21, no. 3, pp. 297–308, 2012.
  21. G. Kroemer and J. Pouyssegur, “Tumor cell metabolism: cancer's Achilles' heel,” Cancer Cell, vol. 13, no. 6, pp. 472–482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Pouysségur, F. Dayan, and N. M. Mazure, “Hypoxia signalling in cancer and approaches to enforce tumour regression,” Nature, vol. 441, no. 7092, pp. 437–443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Swietach, R. D. Vaughan-Jones, and A. L. Harris, “Regulation of tumor pH and the role of carbonic anhydrase 9,” Cancer and Metastasis Reviews, vol. 26, no. 2, pp. 299–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Fischer, P. Hoffmann, S. Voelkl et al., “Inhibitory effect of tumor cell-derived lactic acid on human T cells,” Blood, vol. 109, no. 9, pp. 3812–3819, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. I. Koukourakis, A. Giatromanolaki, A. L. Harris, and E. Sivridis, “Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma,” Cancer Research, vol. 66, no. 2, pp. 632–637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. R. A. Zager, A. C. M. Johnson, S. Y. Hanson, and S. Lund, “Acute nephrotoxic and obstructive injury primes the kidney to endotoxin-driven cytokine/chemokine production,” Kidney International, vol. 69, no. 7, pp. 1181–1188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. L. Verschoor, L. A. Wilson, and G. Singh, “Mechanisms associated with mitochondrialgenerated reactive oxygen species in cancer,” Canadian Journal of Physiology and Pharmacology, vol. 88, no. 3, pp. 204–219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Cheng, J. Sudderth, C. Yang et al., “Pyruvate carboxylase is required for glutamine-independent growth of tumor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 21, pp. 8674–8679, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. J. Deberardinis and T. Cheng, “Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer,” Oncogene, vol. 29, no. 3, pp. 313–324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Y. Kim, Y. Kanai, A. Chairoungdua et al., “Human cystine/glutamate transporter: cDNA cloning and upregulation by oxidative stress in glioma cells,” Biochimica et Biophysica Acta, vol. 1512, no. 2, pp. 335–344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. W. J. Chung, S. A. Lyons, G. M. Nelson et al., “Inhibition of cystine uptake disrupts the growth of primary brain tumors,” Journal of Neuroscience, vol. 25, no. 31, pp. 7101–7110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Huang, Z. Dai, C. Barbacioru, and W. Sadée, “Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance,” Cancer Research, vol. 65, no. 16, pp. 7446–7454, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. J. de Groot and H. Sontheimer, “Glutamate and the biology of gliomas,” GLIA, vol. 59, no. 8, pp. 1181–1189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. E. P. Seidlitz, M. K. Sharma, and G. Singh, “A by-product of glutathione production in cancer cells may cause disruption in bone metabolic processes,” Canadian Journal of Physiology and Pharmacology, vol. 88, no. 3, pp. 197–203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Chatterjee, S. Dasgupta, and D. Sidransky, “Mitochondrial subversion in cancer,” Cancer Prevention Research, vol. 4, no. 5, pp. 638–654, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. H. A. Coller, K. Khrapko, N. D. Bodyak, E. Nekhaeva, P. Herrero-Jimenez, and W. G. Thilly, “High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection,” Nature Genetics, vol. 28, no. 2, pp. 147–150, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Sanchez-Cespedes, P. Parrella, S. Nomoto et al., “Identification of a mononucleotide repeat as a major target for mitochondrial DNA alterations in human tumors,” Cancer Research, vol. 61, no. 19, pp. 7015–7019, 2001. View at Scopus
  38. A. Lièvre, C. Chapusot, A. M. Bouvier et al., “Clinical value of mitochondrial mutations in colorectal cancer,” Journal of Clinical Oncology, vol. 23, no. 15, pp. 3517–3525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. K. K. Singh and M. Kulawiec, “Mitochondrial DNA polymorphism and risk of cancer,” Methods in Molecular Biology, vol. 471, pp. 291–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. L. M. Booker, G. M. Habermacher, B. C. Jessie et al., “North American white mitochondrial haplogroups in prostate and renal cancer,” Journal of Urology, vol. 175, no. 2, pp. 468–472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Kulawiec, K. M. Owens, and K. K. Singh, “MtDNA G10398A variant in African-American women with breast cancer provides resistance to apoptosis and promotes metastasis in mice,” Journal of Human Genetics, vol. 54, no. 11, pp. 647–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. V. W. Setiawan, L. H. Chu, E. M. John et al., “Mitochondrial DNA G10398A variant is not associated with breast cancer in African-American women,” Cancer Genetics and Cytogenetics, vol. 181, no. 1, pp. 16–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Darvishi, S. Sharma, A. K. Bhat, E. Rai, and R. N. K. Bamezai, “Mitochondrial DNA G10398A polymorphism imparts maternal Haplogroup N a risk for breast and esophageal cancer,” Cancer Letters, vol. 249, no. 2, pp. 249–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. P. Mims, T. G. Hayes, S. Zheng et al., “Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women,” Cancer Research, vol. 66, no. 3, pp. 1880–1881, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. J. A. Canter, A. R. Kallianpur, F. F. Parl, and R. C. Millikan, “Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women,” Cancer Research, vol. 65, no. 17, pp. 8028–8033, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. R. K. Bai, S. M. Leal, D. Covarrubias, A. Liu, and L. J. C. Wong, “Mitochondrial genetic background modifies breast cancer risk,” Cancer Research, vol. 67, no. 10, pp. 4687–4694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. E. T. Lam, P. M. Bracci, E. A. Holly, et al., “Mitochondrial DNA sequence variation and risk of pancreatic cancer,” Cancer Research, vol. 72, no. 3, pp. 686–695, 2012.
  48. C. J. Turner, C. Granycome, R. Hurst et al., “Systematic segregation to mutant mitochondrial DNA and accompanying loss of mitochondrial DNA in human NT2 teratocarcinoma cybrids,” Genetics, vol. 170, no. 4, pp. 1879–1885, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. A. K. Rasmussen, A. Chatterjee, L. J. Rasmussen, and K. K. Singh, “Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae,” Nucleic Acids Research, vol. 31, no. 14, pp. 3909–3917, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Amuthan, G. Biswas, S. Y. Zhang, A. Klein-Szanto, C. Vijayasarathy, and N. G. Avadhani, “Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion,” EMBO Journal, vol. 20, no. 8, pp. 1910–1920, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Higuchi, T. Kudo, S. Suzuki et al., “Mitochondrial DNA determines androgen dependence in prostate cancer cell lines,” Oncogene, vol. 25, no. 10, pp. 1437–1445, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Maki, K. Robinson, B. Reguly et al., “Mitochondrial genome deletion aids in the identification of false- and true-negative prostate needle core biopsy specimens,” American Journal of Clinical Pathology, vol. 129, no. 1, pp. 57–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Robinson, J. Creed, B. Reguly et al., “Accurate prediction of repeat prostate biopsy outcomes by a mitochondrial DNA deletion assay,” Prostate Cancer and Prostatic Diseases, vol. 13, no. 2, pp. 126–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Polyak, Y. Li, H. Zhu et al., “Somatic mutations of the mitochondrial genome in human colorectal tumours,” Nature Genetics, vol. 20, no. 3, pp. 291–293, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. M. S. Fliss, H. Usadel, O. L. Caballero et al., “Facile detection of mitochondrial DNA mutations in tumors and bodily fluids,” Science, vol. 287, no. 5460, pp. 2017–2019, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. J. P. Jakupciak, S. Maragh, M. E. Markowitz et al., “Performance of mitochondrial DNA mutations detecting early stage cancer,” BMC Cancer, vol. 8, article 285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. P. M. Vallone, J. P. Jakupciak, and M. D. Coble, “Forensic application of the affymetrix human mitochondrial resequencing array,” Forensic Science International, vol. 1, no. 2, pp. 196–198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Zietkiewicz, M. Witt, P. Daca, J. Zebracka-Gala, M. Goniewicz, and B. Jarzab, “Current genetic methodologies in the identification of disaster victims and in forensic analysis,” Journal of Applied Genetics, vol. 53, no. 1, pp. 41–60, 2012.
  59. B. Reguly, J. P. Jakupciak, and R. L. Parr, “3.4 kb mitochondrial genome deletion serves as a surrogate predictive biomarker for prostate cancer in histopathologically benign biopsy cores,” Journal of the Canadian Urological Association, vol. 4, no. 5, pp. E118–E122, 2010. View at Scopus
  60. S. Ebner, R. Lang, E. E. Mueller, et al., “Mitochondrial haplogroups, control region polymorphisms and malignant melanoma: a study in middle European Caucasians,” PLoS One, vol. 6, no. 12, Article ID e27192, 2011.
  61. R. L. Parr, J. Maki, B. Reguly et al., “The pseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation,” BMC Genomics, vol. 7, article 185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. J. P. Jakupciak, G. D. Dakubo, S. Maragh, and R. L. Parr, “Analysis of potential cancer biomarkers in mitochondrial DNA,” Current Opinion in Molecular Therapeutics, vol. 8, no. 6, pp. 500–506, 2006. View at Scopus
  63. W. H. Koppenol, P. L. Bounds, and C. V. Dang, “Otto Warburg's contributions to current concepts of cancer metabolism,” Nature Reviews Cancer, vol. 11, no. 5, pp. 325–337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” American Journal of Physiology, vol. 292, no. 2, pp. C615–C640, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Mayevsky, R. Walden, E. Pewzner, et al., “Mitochondrial function and tissue vitality: bench-to-bedside real-time optical monitoring system,” Journal of Biomedical Optics, vol. 16, no. 6, Article ID 067004, 2011.
  66. P. Bottoni, B. Giardina, A. Pontoglio, S. Scara, and R. Scatena, “Mitochondrial proteomic approaches for new potential diagnostic and prognostic biomarkers in cancer,” Advances in Experimental Medicine and Biology, vol. 942, pp. 423–440, 2012.
  67. R. Reja, A. J. Venkatakrishnan, J. Lee et al., “MitoInteractome: mitochondrial protein interactome database, and its application in ‘aging network’ analysis,” BMC Genomics, vol. 10, supplement 3, p. S20, 2009.
  68. M. Elstner, C. Andreoli, T. Klopstock, T. Meitinger, and H. Prokisch, “The mitochondrial proteome database: MitoP2,” Methods in Enzymology, vol. 457, pp. 3–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. A. C. Smith, J. A. Blackshaw, and A. J. Robinson, “MitoMiner: a data warehouse for mitochondrial proteomics data,” Nucleic Acids Research, vol. 40, pp. 1160–1167, 2012.
  70. R. Scatena, “Mitochondria and cancer: a growing role in apoptosis, cancer cell metabolism and dedifferentiation,” Advances in Experimental Medicine and Biology, vol. 942, pp. 287–308, 2012.
  71. Y. W. Chen, H. C. Chou, P. C. Lyu et al., “Mitochondrial proteomics analysis of tumorigenic and metastatic breast cancer markers,” Functional and Integrative Genomics, vol. 11, no. 2, pp. 225–239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. R. Wadhwa, T. Yaguchi, M. K. Hasan, Y. Mitsui, R. R. Reddel, and S. C. Kaul, “Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein,” Experimental Cell Research, vol. 274, no. 2, pp. 246–253, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Wadhwa, T. Yaguchi, M. K. Hasan, K. Taira, and S. C. Kaul, “Mortalin-MPD (mevalonate pyrophosphate decarboxylase) interactions and their role in control of cellular proliferation,” Biochemical and Biophysical Research Communications, vol. 302, no. 4, pp. 735–742, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Maitra, Y. Cohen, S. E. D. Gillespie et al., “The human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection,” Genome Research, vol. 14, no. 5, pp. 812–819, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. J. C. Castle, M. Biery, H. Bouzek et al., “DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing,” BMC Genomics, vol. 11, no. 1, article 244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. L. Fendt, H. Niederstätter, G. Huber et al., “Accumulation of mutations over the entire mitochondrial genome of breast cancer cells obtained by tissue microdissection,” Breast Cancer Research and Treatment, vol. 128, no. 2, pp. 327–336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. H. D. Hosgood III, C. S. Liu, N. Rothman et al., “Mitochondrial DNA copy number and lung cancer risk in a prospective cohort study,” Carcinogenesis, vol. 31, no. 5, pp. 847–849, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Nomoto, K. Yamashita, K. Koshikawa, A. Nakao, and D. Sidransky, “Mitochondrial D-loop mutations as clonal markers in multicentric hepatocellular carcinoma and plasma,” Clinical Cancer Research, vol. 8, no. 2, pp. 481–487, 2002. View at Scopus
  79. S. Dasgupta, R. Koch, W. H. Westra et al., “Mitochondrial DNA mutation in normal margins and tumors of recurrent head and neck squamous cell carcinoma patients,” Cancer Prevention Research, vol. 3, no. 9, pp. 1205–1211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Jiang and X. Wang, “Comparative mitochondrial proteomics: perspective in human diseases,” Journal of Hematology & Oncology, vol. 5, article 11, 2012.
  81. G. D. Dakubo, J. P. Jakupciak, M. A. Birch-Machin, and R. L. Parr, “Clinical implications and utility of field cancerization,” Cancer Cell International, vol. 7, article 2, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. R. L. Parr, G. D. Dakubo, K. A. Crandall et al., “Somatic mitochondrial DNA mutations in prostate cancer and normal appearing adjacent glands in comparison to age-matched prostate samples without malignant histology,” Journal of Molecular Diagnostics, vol. 8, no. 3, pp. 312–319, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. K. A. Trujillo, A. C. Jones, J. K. Griffith, and M. Bisoffi, “Markers of field cancerization: proposed clinical applications in prostate biopsies,” Prostate Cancer, vol. 2012, Article ID 302894, 2012.
  84. J. A. O'Shaughnessy, G. J. Kelloff, G. B. Gordon et al., “Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development: recommendations of the American association for cancer research Task force on the Treatment and Prevention of intraepithelial neoplasia,” Clinical Cancer Research, vol. 8, no. 2, pp. 314–346, 2002. View at Scopus
  85. J. P. Jakupciak, A. Maggrah, S. Maragh et al., “Facile whole mitochondrial genome resequencing from nipple aspirate fluid using MitoChip v2.0,” BMC Cancer, vol. 8, article 95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Dasgupta, C. Shao, T. E. Keane, et al., “Detection of mitochondrial deoxyribonucleic acid alterations in urine from urothelial cell carcinoma patients,” International Journal of Cancer, vol. 131, no. 1, pp. 158–164, 2012.
  87. J. Ellinger, D. C. Muller, S. C. Muller, et al., “Circulating mitochondrial DNA in serum: a universal diagnostic biomarker for patients with urological malignancies,” Urologic Oncology, vol. 30, no. 4, pp. 509–515, 2012.
  88. J. Ellinger, S. C. Müller, N. Wernert, A. von Ruecker, and P. J. Bastian, “Mitochondrial DNA in serum of patients with prostate cancer: a predictor of biochemical recurrence after prostatectomy,” British Journal of Urology International, vol. 102, no. 5, pp. 628–632, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Traba, A. Del Arco, M. R. Duchen, G. Szabadkai, and J. Satrustegui, “SCaMC-1 promotes cancer cell survival by desensitizing mitochondrial permeability transition via ATP/ADP-mediated matrix Ca(2+) buffering,” Cell Death & Differentiation, vol. 19, no. 4, pp. 650–660, 2012.
  90. O. Catalina-Rodriguez, V. K. Kolukula, Y. Tomita, et al., “The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis,” Oncotarget, vol. 3, no. 10, pp. 1220–1235, 2012.
  91. F. Balloux, L. J. Handley, T. Jombart, H. Liu, and A. Manica, “Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation,” Proceedings of the Royal Society B, vol. 276, no. 1672, pp. 3447–3455, 2009.
  92. A. Naito, J. Carcel-Trullols, C. H. Xie, T. T. Evans, T. Mizumachi, and M. Higuchi, “Induction of acquired resistance to antiestrogen by reversible mitochondrial DNA depletion in breast cancer cell line,” International Journal of Cancer, vol. 122, no. 7, pp. 1506–1511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. J. A. Dykens, L. D. Marroquin, and Y. Will, “Strategies to reduce late-stage drug attrition due to mitochondrial toxicity,” Expert Review of Molecular Diagnostics, vol. 7, no. 2, pp. 161–175, 2007. View at Publisher · View at Google Scholar · View at Scopus