About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 612649, 12 pages
Research Article

Biochemical, Pharmacological, and Structural Characterization of New Basic Bbil-TX from Bothriopsis bilineata Snake Venom

1Department of Biochemistry, Institute of Biology (IB), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
2Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
3Max Planck Institute of Molecular Plant Physiology and University of Potsdam, Potsdam, Germany

Received 9 May 2012; Revised 17 August 2012; Accepted 1 September 2012

Academic Editor: Laura Leiva

Copyright © 2013 Victor Corasolla Carregari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Bbil-TX, a PLA2, was purified from Bothriopsis bilineata snake venom after only one chromatographic step using RP-HPLC on μ-Bondapak C-18 column. A molecular mass of 14243.8 Da was confirmed by Q-Tof Ultima API ESI/MS (TOF MS mode) mass spectrometry. The partial protein sequence obtained was then submitted to BLASTp, with the search restricted to PLA2 from snakes and shows high identity values when compared to other PLA2s. PLA2 activity was presented in the presence of a synthetic substrate and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0 and 25–37C. Maximum PLA2 activity required Ca2+ and in the presence of Cd2+, Zn2+, Mn2+, and Mg2+ it was reduced in the presence or absence of Ca2+. Crotapotin from Crotalus durissus cascavella rattlesnake venom and antihemorrhagic factor DA2-II from Didelphis albiventris opossum sera under optimal conditions significantly inhibit the enzymatic activity. Bbil-TX induces myonecrosis in mice. The fraction does not show a significant cytotoxic activity in myotubes and myoblasts (C2C12). The inflammatory events induced in the serum of mice by Bbil-TX isolated from Bothriopsis bilineata snake venom were investigated. An increase in vascular permeability and in the levels of TNF-a, IL-6, and IL-1 was was induced. Since Bbil-TX exerts a stronger proinflammatory effect, the phospholipid hydrolysis may be relevant for these phenomena.