About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 614721, 12 pages
http://dx.doi.org/10.1155/2013/614721
Research Article

Genetically Distinct Glossina fuscipes fuscipes Populations in the Lake Kyoga Region of Uganda and Its Relevance for Human African Trypanosomiasis

1Faculty of Science, Gulu University, Loroo Division, Gulu Municpality, Gulu, Uganda
2Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06520, USA
3School of Biological Sciences, Makerere University, Kampala University Rd, Kampala, Uganda
4National Livestock Resources Research Institute, P.O. Box 96, Old Busia Road, Tororo, Uganda
5Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA

Received 30 April 2013; Accepted 19 August 2013

Academic Editor: Harry P. De Koning

Copyright © 2013 Richard Echodu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Itard, D. Cuisance, and G. Tacher, “Trypanosomoses: historique repartition géographique. Principales maladies infectieuses et parasitaires du bétail,” in Europe et Régions Chaudes. Editions Tec et Doc and Editions Médicales Internationales, vol. 2, pp. 1607–1615, Lavoisier, Paris, France, 2003.
  2. J. Jannin and P. Cattand, “Treatment and control of human African trypanosomiasis,” Current Opinion in Infectious Diseases, vol. 17, no. 6, pp. 565–570, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. P. P. Simarro, J. Franco, A. Diarra, J. A. Postigo, and J. Jannin, “Update on field use of the available drugs for the chemotherapy of human African trypanosomiasis,” Parasitology, vol. 139, no. 7, pp. 842–846, 2012.
  4. D. J. Rogers and S. E. Randolph, “Population ecology of tsetse,” Annual Review of Entomology, vol. 30, no. 1, pp. 197–216, 1985.
  5. C. Laveissière and L. Penchenier, Manuel de Lutte Contre La MaLadie du Sommeil, IRD, Institut de Recherche pour le Développement, Collections Didactiques, Paris, France, 2005.
  6. J. P. Kabayo, “Aiming to eliminate tsetse from Africa,” Trends in Parasitology, vol. 18, no. 11, pp. 473–475, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. B. Vreysen, K. M. Saleh, M. Y. Ali et al., “Glossina austeni (diptera: glossinidae) eradicated on the Island of Unguja, Zanzibar, using the sterile insect technique,” Journal of Economic Entomology, vol. 93, no. 1, pp. 123–135, 2000. View at Scopus
  8. R. Brightwell, R. D. Dransfield, P. Stevenson, and B. Williams, “Changes over twelve years in populations of Glossina pallidipes and Glossina longipennis (diptera: Glossinidae) subject to varying trapping pressure at Nguruman, south-west Kenya,” Bulletin of Entomological Research, vol. 87, no. 4, pp. 349–370, 1997. View at Scopus
  9. J. W. Thompson, M. Mitchell, R. B. Rees, W. Shereni, A. H. Schoenfeld, and A. Wilson, “Studies on the efficacy of deltamethrin applied to cattle for the control of tsetse flies (Glossina spp.) in southern Africa,” Tropical Animal Health and Production, vol. 23, no. 4, pp. 221–226, 1991. View at Publisher · View at Google Scholar · View at Scopus
  10. S. G. A. Leak, Tsetse Biology and Ecology: Their Role in the Epidemiology and Control of Trypanosomosis, CABI Publishing, Wallingford, UK, 1999.
  11. R. Allsopp, “Options for vector control against trypanosomiasis in Africa,” Trends in Parasitology, vol. 17, no. 1, pp. 15–19, 2001. View at Scopus
  12. G. A. Vale, J. W. Hargrove, G. F. Cockbill, and R. J. Phelps, “Field trials of baits to control populations of Glossina morsitans morsitans Westwood and G. pallidipes Austen (Diptera: Glossinidae),” Bulletin of Entomological Research, vol. 76, no. 2, pp. 179–193, 1986.
  13. A. Catley and T. Leyland, “Community participation and the delivery of veterinary services in Africa,” Preventive Veterinary Medicine, vol. 49, no. 1-2, pp. 95–113, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Bouyer, T. Balenghien, S. Ravel et al., “Population sizes and dispersal pattern of tsetse flies: rolling on the river?” Molecular Ecology, vol. 18, no. 13, pp. 2787–2797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Solano, D. Kaba, S. Ravel et al., “Population genetics as a tool to select tsetse control strategies: suppression or eradication of Glossina palpalis gambiensis in the niayes of senegal,” PLoS Neglected Tropical Diseases, vol. 4, no. 5, article e692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Vreysen, A. S. Robinson, and J. Hendrichs, Area-Wide Control of Insect Pests, From Research to Field Implementation, Springer, Dordrecht, The Netherlands, 2007.
  17. J. W. Hargrove, “Tsetse eradication: sufficiency, necessity and desirability,” DFID Animal Health Programme, 2003.
  18. D. Cuisance, H. Politzar, P. Merot, and I. Tamboura, “Les lâchers de mâles irradiés dans la campagne de lutte intégrée contre les glossines dans la zone pastorale de Sidéradougou, Burkina Faso,” Revue d’Elevage et de Médecine Vétérinaire des Pays Tropicaux, vol. 37, pp. 449–468, 1984.
  19. V. A. Dyck, J. Hendrichs, and A. S. Robinson, Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management, Springer, Dordrecht, The Netherlands, 2005.
  20. S. Aksoy, A. Caccone, L. M. Okedi, and A. Galvani, “Glossina fuscipes populations provide insights for human African Tryponosomiasis transmission in Uganda,” Trends in Parasitology, vol. 29, no. 8, pp. 394–406, 2013. View at Publisher · View at Google Scholar
  21. M. Kagbadouno, M. Camara, J. Bouyer et al., “Tsetse elimination: its interest and feasibility in the historical sleeping sickness focus of loos islands, Guinea,” Parasite, vol. 16, no. 1, pp. 29–35, 2009. View at Scopus
  22. J. Bouyer, A. Sibert, M. Desquesnes, D. Cuisance, and S. De La Rocque, “A diffusion model for Glossina palpalis gambiensis in Burkina Faso,” in Area-Wide Control of Insect Pests. From Research to Field Implementation, M. J. B. Vreysen, A. S. Robinson, and J. Hendrichs, Eds., pp. 221–228, Springer, Dordrecht, The Netherlands.
  23. N. A. Dyer, A. Furtado, J. Cano et al., “Evidence for a discrete evolutionary lineage within Equatorial Guinea suggests that the tsetse fly Glossina palpalis palpalis exists as a species complex,” Molecular Ecology, vol. 18, no. 15, pp. 3268–3282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. P. P. Abila, M. A. Slotman, A. Parmakelis et al., “High levels of genetic differentiation between Ugandan Glossina fuscipes fuscipes populations separated by Lake Kyoga,” PLoS Neglected Tropical Diseases, vol. 2, no. 5, article e242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. S. Beadell, C. Hyseni, P. P. Abila et al., “Phylogeography and population structure of Glossina fuscipes fuscipes in Uganda: implications for control of tsetse,” PLoS Neglected Tropical Diseases, vol. 4, no. 3, article e636, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Echodu, J. S. Beadell, L. M. Okedi, C. Hyseni, S. Aksoy, and A. Caccone, “Temporal stability of Glossina fuscipes fuscipes populations in Uganda,” Parasites and Vectors, vol. 4, no. 1, article 19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. T. Kalinowski, “The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure,” Heredity, vol. 106, no. 4, pp. 625–632, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Cecchi, R. C. Mattioli, J. Slingenbergh, and S. De La Rocque, “Land cover and tsetse fly distributions in sub-Saharan Africa,” Medical and Veterinary Entomology, vol. 22, no. 4, pp. 364–373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. W. Hargrove and J. Brady, “Activity rhythms of tsetse flies (Glossina spp.) (Diptera: Glossinidae) at low and high temperatures in nature,” Bulletin of Entomological Research, vol. 82, no. 3, pp. 321–326, 1992. View at Scopus
  30. N. A. Dyer, S. Ravel, K.-S. Choi et al., “Cryptic diversity within the major trypanosomiasis vector Glossina fuscipes revealed by molecular markers,” PLoS Neglected Tropical Diseases, vol. 5, no. 8, Article ID e1266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. J. N. Pollock, Training Manual for Tsetse Control Personnel, vol. 2 of Ecology and Behaviour of Tsetse, Food and Agriculture Organization, Rome, Italy, 1982.
  32. E. S. Krafsur, “Tsetse fly population genetics: an indirect approach to dispersal,” Trends in Parasitology, vol. 19, no. 4, pp. 162–166, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Hyseni, A. Kato, L. Okedi, C. Masembe, J. Ouma, S. Aksoy, et al., “The population structure of Glossina fuscipes fuscipes in the Lake Victoria basin in Uganda: implications for vector control,” Parasites and Vectors, vol. 5, no. 1, Article ID e222, 2012.
  34. R. E. Symula, I. Marpuri, R. D. Bjornson et al., “Influence of host phylogeographic patterns and incomplete lineage sorting on within-species genetic variability in Wigglesworthia species, obligate symbionts of tsetse flies,” Applied and Environmental Microbiology, vol. 77, no. 23, pp. 8400–8408, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. U. Alam, C. Hyseni, R. Symula, C. Brelsfoard, Y. Wu, O. Kruglov, et al., “Microfauna-host interactions: implications for trypanosome transmission dynamics in Glossina fuscipes fuscipes in Uganda,” Applied and Environmental Microbiology, vol. 78, no. 13, pp. 4627–4637, 2012.
  36. U. Alam, J. Medlock, C. Brelsfoard et al., “Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the Tsetse fly Glossina morsitans,” PLoS Pathogens, vol. 7, no. 12, Article ID e1002415, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. R. V. M. Rio, R. E. Symula, J. Wang et al., “Insight into the transmission biology and species-specific functional capabilities of tsetse (diptera: glossinidae) obligate symbiont Wigglesworthia,” mBio, vol. 3, no. 1, Article ID e00240-11, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. E. M. Fèvre, K. Picozzi, J. Fyfe et al., “A burgeoning epidemic of sleeping sickness in Uganda,” The Lancet, vol. 366, no. 9487, pp. 745–747, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Picozzi, E. M. Fèvre, M. Odiit et al., “Sleeping sickness in Uganda: a thin line between two fatal diseases,” British Medical Journal, vol. 331, no. 7527, pp. 1238–1241, 2005. View at Scopus
  40. W. C. Gibson, “The significance of genetic exchange in trypanosomes,” Parasitology Today, vol. 11, no. 12, pp. 465–468, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Peacock, V. Ferris, R. Sharma et al., “Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 9, pp. 3671–3676, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Peacock, V. Ferris, M. Bailey, and W. Gibson, “Intraclonal mating occurs during tsetse transmission of Trypanosoma brucei,” Parasites and Vectors, vol. 2, no. 1, article 43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Peacock, V. Ferris, M. Bailey, and W. Gibson, “Fly transmission and mating of Trypanosoma brucei brucei strain 427,” Molecular and Biochemical Parasitology, vol. 160, no. 2, pp. 100–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Challier and C. Laveissiere, “Un nouveau piège pour la capture des glossines (Glossina: Diptera, Muscidae): description et essais sur le terrain,” Cahiers ORSTOM, Série Entomologie Médicale Et Parasitologie, vol. 11, pp. 251–262, 1973.
  45. K. Agata, S. Alasaad, V. M. F. Almeida-Val et al., “Permanent genetic resources added to molecular ecology resources database 1 December 2010–31 January 2011,” Molecular Ecology Resources, vol. 11, no. 3, pp. 586–589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Rousset, “GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux,” Molecular Ecology Resources, vol. 8, no. 1, pp. 103–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Peakall and P. E. Smouse, “GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research,” Molecular Ecology Notes, vol. 6, no. 1, pp. 288–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Goudet, “FSTAT (Version 1. 2): a computer program to calculate F-statistics,” Journal of Heredity, vol. 86, no. 6, pp. 485–486, 1995.
  49. L. Excoffier, G. Laval, and S. Schneider, “Arlequin (version 3. 0): an integrated software package for population genetics data analysis,” Evolutionary Bioinformatics Online, vol. 1, no. 47, 2005.
  50. J. Rozas, J. C. Sánchez-DelBarrio, X. Messeguer, and R. Rozas, “DnaSP, DNA polymorphism analyses by the coalescent and other methods,” Bioinformatics, vol. 19, no. 18, pp. 2496–2497, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. B. S. Weir and C. C. Cockerham, “Estimating F-statistics for the analysis of population structure,” Evolution, vol. 38, no. 6, pp. 1358–1370, 1984. View at Scopus
  52. M. Clement, D. Posada, and K. A. Crandall, “TCS: a computer program to estimate gene genealogies,” Molecular Ecology, vol. 9, no. 10, pp. 1657–1659, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. J. K. Pritchard, M. Stephens, and P. Donnelly, “Inference of population structure using multilocus genotype data,” Genetics, vol. 155, no. 2, pp. 945–959, 2000. View at Scopus
  54. D. Earl and B. VonHoldt, “STRUCTURE HARVESTER: a website and program for visualizing STRUCTRE output and implementing the Evanno method,” Conservation Genetics Resources, vol. 4, no. 2, pp. 359–361, 2012.
  55. G. Evanno, S. Regnaut, and J. Goudet, “Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study,” Molecular Ecology, vol. 14, no. 8, pp. 2611–2620, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Manel, P. Berthier, and G. Luikart, “Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes,” Conservation Biology, vol. 16, no. 3, pp. 650–659, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Paetkau, R. Slade, M. Burden, and A. Estoup, “Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power,” Molecular Ecology, vol. 13, no. 1, pp. 55–65, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Rannala and J. L. Mountain, “Detecting immigration by using multilocus genotypes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 17, pp. 9197–9201, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. D. A. Konovalov and D. Heg, “A maximum-likelihood relatedness estimator allowing for negative relatedness values,” Molecular Ecology Resources, vol. 8, no. 2, pp. 256–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. C. A. Mossman and P. M. Waser, “Genetic detection of sex-biased dispersal,” Molecular Ecology, vol. 8, no. 6, pp. 1063–1067, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. H. J. Barclay and J. W. Hargrove, “Probability models to facilitate a declaration of pest-free status, with special reference to tsetse (Diptera: Glossinidae),” Bulletin of Entomological Research, vol. 95, no. 1, pp. 1–11, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Symula, U. Alam, C. Brelsfoard, Y. Wu, R. Echodu, L. Okedi, et al., “Wolbachia association with the tsetse fly, Glossina fuscipes fuscipes, reveals high levels of genetic diversity and complex evolutionary dynamics,” BMC Evolutionary Biology, vol. 13, article 1, 2013.