About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 617569, 19 pages
http://dx.doi.org/10.1155/2013/617569
Research Article

Obesity, Insulin Resistance, and Metabolic Syndrome: A Study in WNIN/Ob Rats from a Pancreatic Perspective

1Department of Biochemistry/Stem Cell Research, National Institute of Nutrition, Indian Council of Medical Research, Jamai-Osmania (P.O), Hyderabad, Andhra Pradesh 500007, India
2Laboratory 12, National Center for Cell Sciences, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, Maharashtra 411007, India
3Division of Community Studies, National Institute of Nutrition, Hyderabad, Andhra Pradesh 500007, India
4Manipal Institute of Regenerative Medicine, GKVK Post, Bellary Road, Allalasandra, Yelahanka, Bangalore, Karnataka 560065, India
5National Center for Laboratory Animal Sciences, National Institute of Nutrition, Hyderabad, Andhra Pradesh 500007, India

Received 16 July 2013; Revised 9 November 2013; Accepted 11 November 2013

Academic Editor: Oreste Gualillo

Copyright © 2013 Vijayalakshmi Venkatesan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Qatanani and M. A. Lazar, “Mechanisms of obesity-associated insulin resistance: many choices on the menu,” Genes and Development, vol. 21, no. 12, pp. 1443–1455, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. W. T. Cefalu, “Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition,” ILAR Journal, vol. 47, no. 3, pp. 186–198, 2006. View at Scopus
  3. N. V. Giridharan, “Animal models of obesity and their usefulness in molecular approach to obesity,” Indian Journal of Medical Research, vol. 108, pp. 225–242, 1998. View at Scopus
  4. R. R. Kalashikam, K. K. Battula, V. Kirlampalli, J. M. Friedman, and G. Nappanveettil, “Obese locus in WNIN/obese rat maps on chromosome 5 upstream of leptin receptor,” PLoS ONE, vol. 8, no. 10, Article ID e77679, 2013. View at Publisher · View at Google Scholar
  5. N. V. Giridharan, P. Sailaja, and N. Harishankar, “A new obese rat model to study obesity and cardiovascular risks,” Proceedings of CMJ Journal, vol. 96, 2010.
  6. N. Harishankar, P. U. Kumar, B. Sesikeran, and N. Giridharan, “Obesity associated pathophysiological & histological changes in WNIN obese mutant rats,” Indian Journal of Medical Research, vol. 134, no. 9, pp. 330–340, 2011. View at Scopus
  7. S. L. Madhira, G. Nappanveethl, V. Kodavalla, and V. Venkatesan, “Comparison of adipocyte-specific gene expression from WNIN/Ob mutant obese rats, lean control, and parental control,” Molecular and Cellular Biochemistry, vol. 357, pp. 217–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. L. Madhira, S. S. Challa, M. Chalasani et al., “Promise(s) of mesenchymal stem cells as an in vitro model system to depict pre-diabetic/diabetic milieu in WNIN/GR-Ob mutant rats,” PLoS ONE, vol. 7, no. 10, Article ID e48061, 2012.
  9. G. Kewalramani, P. J. Bilan, and A. Klip, “Muscle insulin resistance: assault by lipids, cytokines and local macrophages,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 4, pp. 382–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Wang, Y. Guan, and J. Yang, “Cytokines in the progression of pancreatic β-cell dysfunction,” International Journal of Endocrinology, vol. 2010, Article ID 515136, 10 pages, 2010. View at Publisher · View at Google Scholar
  11. S. G. Kiran, R. K. Dorisetty, M. R. Umrani et al., “Pyridoxal 5′ phosphate protects islets against streptozotocin-induced beta-cell dysfunction- in vitro and in vivo,” Experimental Biology and Medicine, vol. 236, no. 4, pp. 456–465, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Kikkawa, “Chronic complications in diabetes mellitus,” British Journal of Nutrition, vol. 84, no. 2, pp. S183–S185, 2000. View at Scopus
  13. T. Mitsuhashi, K. Hibi, M. Kosuge et al., “Relation between hyperinsulinemia and nonculprit plaque characteristics in nondiabetic patients with acute coronary syndromes,” JACC: Cardiovascular Imaging, vol. 4, no. 4, pp. 392–401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Venkatesan, M. Chalsani, S. S. Nawaz, R. R. Bhonde, S. S. Challa, and G. Nappanveettil, “Optimization of condition(s) towards establishment of primary islet cell cultures from WNIN/Ob mutant rat,” Cytotechnology, vol. 64, no. 2, pp. 139–144, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Chairmandurai, S. Kanappa, K. Vadrevu, U. Putcha, and V. Venkatesan, “Recombinant human epidermal growth factor alleviates gastric antral ulcer induced by naproxen: a non-steroidal anti inflammatory drug,” Gastroenterology Research, vol. 3, pp. 1918–2813, 2010.
  16. R. K. Dorisetty, S. G. Kiran, M. R. Umrani, S. Boindala, R. R. Bhonde, and V. Venkatesan, “Immunolocalization of nestin in pancreatic tissue of mice at different ages,” World Journal of Gastroenterology, vol. 14, no. 46, pp. 7112–7116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Gobe, “Identification of apoptosis in kidney tissue sections,” Methods in Molecular Biology, vol. 466, pp. 175–192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. T. Finegood, M. D. McArthur, D. Kojwang et al., “β-Cell mass dynamics in Zucker diabetic fatty rats: rosiglitazone prevents the rise in net cell death,” Diabetes, vol. 50, no. 5, pp. 1021–1029, 2001. View at Scopus
  19. K. Mishima, A. P. Mazar, A. Gown et al., “A peptide derived from the non-receptor-binding region of urokinase plasminogen activator inhibits glioblastoma growth and angiogenesis in vivo in combination with cisplatin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 15, pp. 8484–8489, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. A.-A. Dussault and M. Pouliot, “Rapid and simple comparison of messenger RNA levels using real-time PCR,” Biological Procedures Online, vol. 8, no. 1, pp. 1–10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. M. Amoli, R. Moosavizadeh, and B. Larijani, “Optimizing conditions for rat pancreatic islets isolation,” Cytotechnology, vol. 48, no. 1–3, pp. 75–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Y.-F. Cui, M. Ma, G.-Y. Wang, D.-E. Han, B. Vollmar, and M. D. Menger, “Prevention of core cell damage in isolated islets of Langerhans by low temperature preconditioning,” World Journal of Gastroenterology, vol. 11, no. 4, pp. 545–550, 2005. View at Scopus
  23. S. S. Challa, G. S. Kiran, R. R. Bhonde, and V. Venkatesan, “Enhanced neogenic potential of Panc-1 cells supplemented with human umbilical cord blood serum-An alternative to FCS,” Tissue and Cell, vol. 43, no. 4, pp. 266–270, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Xu, G. T. Barnes, Q. Yang et al., “Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1821–1830, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Singotamu and P. M. Chary, “Scanning electron microscope studies on genetically modified (GM) crops–G.M. cotton fiber (Gossypium herbaceum),” Scanning, vol. 27, no. 3, pp. 160–161, 2005. View at Scopus
  26. V. Vijayalakshmi and P. D. Gupta, “Role of transglutaminase in keratinization of vaginal epithelial cells in oestrous cycling rats,” Biochemistry and Molecular Biology International, vol. 43, no. 5, pp. 1041–1049, 1997. View at Scopus
  27. M. Cnop, N. Welsh, J.-C. Jonas, A. Jörns, S. Lenzen, and D. L. Eizirik, “Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities,” Diabetes, vol. 54, no. 2, pp. S97–S107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Ehses, A. Perren, E. Eppler et al., “Increased number of islet-associated macrophages in type 2 diabetes,” Diabetes, vol. 56, no. 9, pp. 2356–2370, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. C.-H. Hsieh, Y.-J. Hung, C.-Z. Wu et al., “Insulin resistance & secretion in subjects with normal fasting plasma glucose,” Indian Journal of Medical Research, vol. 124, pp. 527–534, 2006. View at Scopus
  30. P. Bandaru, H. Rajkumar, and G. Nappanveettil, “Altered or impaired immune response upon vaccination in WNIN/Ob rats,” Vaccine, vol. 29, no. 16, pp. 3038–3042, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Bandaru, H. Rajkumar, and G. Nappanveettil, “The impact of obesity on immune response to infection and vaccine: an insight into plausible mechanisms,” Endocrinology & Metabolic Syndrome, vol. 2, p. 113, 2013.
  32. C. Sánchez-Pozo, J. Rodriguez-Baño, A. Domínguez-Castellano, M. A. Muniain, R. Goberna, and V. Sánchez-Margalet, “Leptin stimulates the oxidative burst in control monocytes but attenuates the oxidative burst in monocytes from HIV-infected patients,” Clinical and Experimental Immunology, vol. 134, no. 3, pp. 464–469, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Rui, V. Aguirre, J. K. Kim et al., “Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways,” Journal of Clinical Investigation, vol. 107, no. 2, pp. 181–189, 2001. View at Scopus
  34. M. Chentouf, G. Dubois, C. Jahannaut et al., “Excessive food intake, obesity and inflammation process in Zucker fa/fa rat pancreatic islets,” PLoS ONE, vol. 6, no. 8, Article ID e22954, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. O. P. Kristiansen and T. Mandrup-Poulsen, “Interleukin-6 and diabetes: the good, the bad, or the indifferent?” Diabetes, vol. 54, no. 2, pp. S114–S124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. D. C. Nieman, S. L. Nehlsen-Cannarella, D. A. Henson et al., “Immune response to obesity and moderate weight loss,” International Journal of Obesity, vol. 20, no. 4, pp. 353–360, 1996. View at Scopus
  37. D. O'Shea, T. J. Cawood, C. O'Farrelly, and L. Lynch, “Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke,” PloS ONE, vol. 5, no. 1, Article ID e8660, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J.-P. Bastard, M. Maachi, C. Lagathu et al., “Recent advances in the relationship between obesity, inflammation, and insulin resistance,” European Cytokine Network, vol. 17, no. 1, pp. 4–12, 2006. View at Scopus
  39. C. Procaccini, E. Jirillo, and G. Matarese, “Leptin as an immunomodulator,” Molecular Aspects of Medicine, vol. 33, no. 1, pp. 35–45, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Bandaru, H. Rajkumar, V. P. Upadrasta, and G. Nappanveettil, “Role of leptin in immune dysfunction in WNIN obese rats,” Endocrinology & Metabolic Syndrome, vol. 2, p. 116, 2013.
  41. V. de Rosa, C. Procaccini, G. Calì et al., “A key role of leptin in the control of regulatory T cell proliferation,” Immunity, vol. 26, no. 2, pp. 241–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. H. K. Vincent and A. G. Taylor, “Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans,” International Journal of Obesity, vol. 30, no. 3, pp. 400–418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. P. A. Tataranni and E. Ortega, “A burning question: does an adipokine-induced activation of the immune system mediate the effect of overnutrition on type 2 diabetes?” Diabetes, vol. 54, no. 4, pp. 917–927, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. K. E. Wellen and G. S. Hotamisligil, “Obesity-induced inflammatory changes in adipose tissue,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1785–1788, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Saisho, A. E. Butler, E. Manesso, D. Elashoff, R. A. Rizza, and P. C. Butler, “β-cell mass and turnover in humans: effects of obesity and aging,” Diabetes Care, vol. 36, pp. 111–117, 2013. View at Publisher · View at Google Scholar
  46. D. A. Nugent, D. M. Smith, and H. B. Jones, “A review of islet of Langerhans degeneration in rodent models of type 2 diabetes,” Toxicologic Pathology, vol. 36, no. 4, pp. 529–551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Kaneto, T.-A. Matsuoka, S. Kawashima et al., “Role of MafA in pancreatic β-cells,” Advanced Drug Delivery Reviews, vol. 61, no. 7-8, pp. 489–496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Kawamori, Y. Kajimoto, H. Kaneto et al., “Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH2-terminal kinase,” Diabetes, vol. 52, no. 12, pp. 2896–2904, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. K. L. Lipson, S. G. Fonseca, S. Ishigaki et al., “Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1,” Cell Metabolism, vol. 4, no. 3, pp. 245–254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. R. J. Kaufman, S. H. Back, B. Song, J. Han, and J. Hassler, “The unfolded protein response is required to maintain the integrity of the endoplasmic reticulum, prevent oxidative stress and preserve differentiation in β-cells,” Diabetes, Obesity and Metabolism, vol. 12, no. 2, pp. 99–107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. U. Özcan, Q. Cao, E. Yilmaz et al., “Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes,” Science, vol. 306, no. 5695, pp. 457–461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Thanumalayan, M. Laxmi Narasu, and V. Venkatesan, “Down regulation of suppressor of potassium transport defect 3 (SKD3) in testis of nonobese diabetic (NOD) mice,” Indian Journal of Veterinary Pathology, vol. 32, pp. 242–245, 2008.
  53. D. A. Cunha, P. Hekerman, L. Ladrière et al., “Initiation and execution of lipotoxic ER stress in pancreatic β-cells,” Journal of Cell Science, vol. 121, no. 14, pp. 2308–2318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. W. Quan, Y.-M. Lim, and M.-S. Lee, “Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic β-cells,” Experimental and Molecular Medicine, vol. 44, no. 2, pp. 81–88, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. G. B. Reddy, V. Vasireddy, M. N. A. Mandal et al., “A novel rat model with obesity-associated retinal degeneration,” Investigative Ophthalmology and Visual Science, vol. 50, no. 7, pp. 3456–3463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Harishankar, P. Ravinder, K. M. Nair, and N. Giridharan, “Infertility in WNIN obese mutant rats-causes?” ISRN Endocrinol, vol. 2011, Article ID 863403, 7 pages, 2011. View at Publisher · View at Google Scholar
  57. M. Y. Donath, M. Böni-Schnetzler, H. Ellingsgaard, and J. A. Ehses, “Islet inflammation impairs the pancreatic B-ceII in type 2 diabetes,” Physiology, vol. 24, no. 6, pp. 325–331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. N.-G. Chen, T. M. Tassava, and D. R. Romsos, “Threshold for glucose-stimulated insulin secretion in pancreatic islets of genetically obese (ob/ob) mice is abnormally low,” Journal of Nutrition, vol. 123, no. 9, pp. 1567–1574, 1993. View at Scopus
  59. K. Kaneko, K. Ueki, N. Takahashi et al., “Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms,” Cell Metabolism, vol. 12, no. 6, pp. 619–632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. Y.-L. Ding, Y.-H. Wang, W. Huang et al., “Glucose intolerance and decreased early insulin response in mice with severe hypertriglyceridemia,” Experimental Biology and Medicine, vol. 235, no. 1, pp. 40–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. H.-E. Kim, S.-E. Choi, S.-J. Lee et al., “Tumour necrosis factor-α-induced glucose-stimulated insulin secretion inhibition in INS-1 cells is ascribed to a reduction of the glucose-stimulated Ca2+ influx,” Journal of Endocrinology, vol. 198, no. 3, pp. 549–560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Seufert, “Leptin Effects on Pancreatic β-Cell Gene Expression and Function,” Diabetes, vol. 53, no. 1, pp. S152–S158, 2004. View at Scopus
  63. L. P. Roma, S. M. Pascal, J. Duprez, and J. C. Jonas, “Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects after prolonged culture in a low non-stimulating glucose concentration,” Diabetologia, vol. 55, pp. 2226–2237, 2012. View at Publisher · View at Google Scholar
  64. R. Alemzadeh and K. M. Tushaus, “Modulation of adipoinsular axis in prediabetic Zucker diabetic fatty rats by diazoxide,” Endocrinology, vol. 145, no. 12, pp. 5476–5484, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Üçkaya, P. Delagrange, A. Chavanieu et al., “Improvement of metabolic state in an animal model of nutrition-dependent type 2 diabetes following treatment with S 23521, a new glucagon-like peptide 1 (GLP-1) analogue,” Journal of Endocrinology, vol. 184, no. 3, pp. 505–513, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Y. Donath, M. Böni-Schnetzler, H. Ellingsgaard, P. A. Halban, and J. A. Ehses, “Cytokine production by islets in health and diabetes: cellular origin, regulation and function,” Trends in Endocrinology and Metabolism, vol. 21, no. 5, pp. 261–267, 2010. View at Publisher · View at Google Scholar · View at Scopus