About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 618432, 14 pages
http://dx.doi.org/10.1155/2013/618432
Research Article

Modulation of Pineal Melatonin Synthesis by Glutamate Involves Paracrine Interactions between Pinealocytes and Astrocytes through NF- B Activation

1Laboratory of Pharmacology, Butantan Institute, Avenida Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil
2Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo Avenida Professor Lineu Prestes 1524, 05508-900 São Paulo, SP, Brazil
3Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, 05508-900 São Paulo, SP, Brazil

Received 26 April 2013; Accepted 28 June 2013

Academic Editor: Alejandro Lomniczi

Copyright © 2013 Darine Villela et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Calvo, J. Boya, A. Borregon, and J. E. Garcia-Maurino, “Presence of glial cells in the rat pineal gland: a light and electron microscopic immunohistochemical study,” Anatomical Record, vol. 220, no. 4, pp. 424–428, 1988. View at Scopus
  2. L. Vollrath, The Pineal Organ, Springer, New York, NY, USA, 1981.
  3. R. Y. Moore, J. C. Speh, and J. P. Card, “The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells,” Journal of Comparative Neurology, vol. 352, no. 3, pp. 351–366, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Sugden, “Melatonin biosynthesis in the mammalian pineal gland,” Experientia, vol. 45, no. 10, pp. 922–932, 1989. View at Scopus
  5. A. F. Afeche, D. C. M. Villela, M. V. Abrahão, R. Peres, J. Cipolla-Neto, et al., “Melatonin and pineal gland,” in New Research on Neurosecretory Systems, E. Romano, Ed., pp. 151–177, Nova Science Publishers, Hauppauge, NY, USA, 2008.
  6. J. Arendt, Melatonin and the Mammalian Pineal Gland, Chapman & Hall, London, UK, 1995.
  7. M. Ehret, P. Pevet, and M. Maitre, “Tryptophan hydroxylase synthesis is induced by 3′,5′-cyclic adenosine monophosphate during circadian rhythm in the rat pineal gland,” Journal of Neurochemistry, vol. 57, no. 5, pp. 1516–1521, 1991. View at Scopus
  8. D. C. Klein, G. R. Berg, and J. Weller, “Melatonin synthesis: adenosine 3′,5′-monophosphate and norepinephrine stimulate N-acetyltransferase,” Science, vol. 168, no. 3934, pp. 979–980, 1970. View at Scopus
  9. D. C. Klein, N. L. Schaad, M. A. A. Namboordiri, L. Yu, and J. L. Weller, “Control of N-acetyltransferase,” Biochemical Society Transactions, vol. 20, no. 2, pp. 299–304, 1992. View at Scopus
  10. V. Simonneaux and C. Ribelayga, “Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters,” Pharmacological Reviews, vol. 55, no. 2, pp. 325–395, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Ishio, H. Yamada, C. M. Craft, and Y. Moriyama, “Hydroxyindole-O-methyltransferase is another target for L-glutamate-evoked inhibition of melatonin synthesis in rat pinealocytes,” Brain Research, vol. 850, no. 1-2, pp. 73–78, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Yamada, S. Yatsushiro, S. Ishio et al., “Metabotropic glutamate receptors negatively regulate melatonin synthesis in rat pinealocytes,” Journal of Neuroscience, vol. 18, no. 6, pp. 2056–2062, 1998. View at Scopus
  13. H. Yamada, A. Yamamoto, M. Takahashi, H. Michibata, H. Kumon, and Y. Moriyama, “The L-type Ca2+ channel is involved in microvesicle-mediated glutamate exocytosis from rat pinealocytes,” Journal of Pineal Research, vol. 21, no. 3, pp. 165–174, 1996. View at Scopus
  14. H. Yamada, A. Yamamoto, S. Yodozawa et al., “Microvesicle-mediated exocytosis of glutamate is a novel paracrine-like chemical transduction mechanism and inhibits melatonin secretion in rat pinealocytes,” Journal of Pineal Research, vol. 21, no. 3, pp. 175–191, 1996. View at Scopus
  15. H. Yamada, A. Ogura, S. Koizumi, A. Yamaguchi, and Y. Moriyama, “Acetylcholine triggers L-glutamate exocytosis via nicotinic receptors and inhibits melatonin synthesis in rat pinealocytes,” Journal of Neuroscience, vol. 18, no. 13, pp. 4946–4952, 1998. View at Scopus
  16. S. Yatsushiro, H. Yamada, M. Hayashi, A. Yamamoto, and Y. Moriyama, “Ionotropic glutamate receptors trigger microvesicle-mediated exocytosis of L-glutamate in rat pinealocytes,” Journal of Neurochemistry, vol. 75, no. 1, pp. 288–297, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. M.-H. Kim, S. Uehara, A. Muroyama, B. Hille, Y. Moriyama, and D.-S. Koh, “Glutamate transporter-mediated glutamate secretion in the mammalian pineal gland,” Journal of Neuroscience, vol. 28, no. 43, pp. 10852–10863, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Yatsushiro, H. Yamada, M. Hayashi, S. Tsuboi, and Y. Moriyama, “Functional expression of metabotropic glutamate receptor type 5 in rat pinealocytes,” NeuroReport, vol. 10, no. 7, pp. 1599–1603, 1999. View at Scopus
  19. C. Kaur, V. Sivakumar, and E. A. Ling, “Expression of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) GluR2/3 receptors in the developing rat pineal gland,” Journal of Pineal Research, vol. 39, no. 3, pp. 294–301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Pabst and P. Redecker, “Interstitial glial cells of the gerbil pineal gland display immunoreactivity for the metabotropic glutamate receptors mGluR2/3 and mGluR5,” Brain Research, vol. 838, no. 1-2, pp. 60–68, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. M. M. Halassa, T. Fellin, and P. G. Haydon, “The tripartite synapse: roles for gliotransmission in health and disease,” Trends in Molecular Medicine, vol. 13, no. 2, pp. 54–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. M. Finkbeiner, “Glial calcium,” Glia, vol. 9, no. 2, pp. 83–104, 1993. View at Scopus
  23. E. A. Newman, “New roles for astrocytes: regulation of synaptic transmission,” Trends in Neurosciences, vol. 26, no. 10, pp. 536–542, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. J. T. Porter and K. D. McCarthy, “Astrocytic neurotransmitter receptors in situ and in vivo,” Progress in Neurobiology, vol. 51, no. 4, pp. 439–455, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Parpura, T. A. Basarsky, F. Liu, K. Jeftinija, S. Jeftinija, and P. G. Haydon, “Glutamate-mediated astrocyte-neuron signalling,” Nature, vol. 369, no. 6483, pp. 744–747, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. T. D. Hassinger, P. B. Atkinson, G. J. Strecker et al., “Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves,” Journal of Neurobiology, vol. 28, no. 2, pp. 159–170, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. R. H. Lipsky, K. Xu, D. Zhu et al., “Nuclear factor κB is a critical determinant in N-methyl-D-aspartate receptor-mediated neuroprotection,” Journal of Neurochemistry, vol. 78, no. 2, pp. 254–264, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. P. Mattson, C. Culmsee, Z. Yu, and S. Camandola, “Roles of nuclear factor κB in neuronal survival and plasticity,” Journal of Neurochemistry, vol. 74, no. 2, pp. 443–456, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. C. D. Munhoz, B. García-Bueno, J. L. M. Madrigal, L. B. Lepsch, C. Scavone, and J. C. Leza, “Stress-induced neuroinflammation: mechanisms and new pharmacological targets,” Brazilian Journal of Medical and Biological Research, vol. 41, no. 12, pp. 1037–1046, 2008. View at Scopus
  30. S. Camandola and M. P. Mattson, “NF-ΚB as a therapeutic target in neurodegenerative diseases,” Expert Opinion on Therapeutic Targets, vol. 11, no. 2, pp. 123–132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Kaltschmidt, D. Widera, and C. Kaltschmidt, “Signaling via NF-κB in the nervous system,” Biochimica et Biophysica Acta, vol. 1745, no. 3, pp. 287–299, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. P. T. Massa, H. Aleyasin, D. S. Park, X. Mao, and S. W. Barger, “NFκB in neurons? the uncertainty principle in neurobiology,” Journal of Neurochemistry, vol. 97, no. 3, pp. 607–618, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Häcker and M. Karin, “Regulation and function of IKK and IKK-related kinases,” Science's STKE, vol. 2006, no. 357, p. re13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Beinke and S. C. Ley, “Functions of NF-κB1 and NF-κB2 in immune cell biology,” Biochemical Journal, vol. 382, no. 2, pp. 393–409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. N. D. Perkins, “Integrating cell-signalling pathways with NF-κB and IKK function,” Nature Reviews Molecular Cell Biology, vol. 8, pp. 49–62, 2007. View at Publisher · View at Google Scholar
  36. E. Cecon, P. A. Fernandes, L. Pinato, Z. S. Ferreira, and R. P. Markus, “Daily variation of constitutively activated nuclear factor κB (NFKB) in rat pineal gland,” Chronobiology International, vol. 27, no. 1, pp. 52–67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. S. Ferreira, P. A. C. M. Fernandes, D. Duma, J. Assreuy, M. C. W. Avellar, and R. P. Markus, “Corticosterone modulates noradrenaline-induced melatonin synthesis through inhibition of nuclear factor κB,” Journal of Pineal Research, vol. 38, no. 3, pp. 182–188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. C. Afeche, R. Barbosa, J. H. Scialfa, I. M. Terra, A. C. Cassola, and J. Cipolla-Neto, “Effects of the blockade of high voltage-activated calcium channels on in vitro pineal melatonin synthesis,” Cell Biochemistry and Function, vol. 24, no. 6, pp. 499–505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Barlaam, T. G. Bird, C. Lambert-Van Der Brempt, D. Campbell, S. J. Foster, and R. Maciewicz, “New α-substituted succinate-based hydroxamic acids as TNFα convertase inhibitors,” Journal of Medicinal Chemistry, vol. 42, no. 23, pp. 4890–4908, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Glezer, C. D. Munhoz, E. M. Kawamoto, T. Marcourakis, M. C. Werneck Avellar, and C. Scavone, “MK-801 and 7-Ni attenuate the activation of brain NF-κB induced by LPS,” Neuropharmacology, vol. 45, no. 8, pp. 1120–1129, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Rong and M. Baudry, “Seizure activity results in a rapid induction of nuclear factor-κB in adult but not juvenile rat limbic structures,” Journal of Neurochemistry, vol. 67, no. 2, pp. 662–668, 1996. View at Scopus
  42. I. Nicoletti, G. Migliorati, M. C. Pagliacci, F. Grignani, and C. Riccardi, “A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry,” Journal of Immunological Methods, vol. 139, no. 2, pp. 271–279, 1991. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. F. Jiang-Shieh, C. H. Wu, M. L. Chang, J. Y. Shieh, and C. Y. Wen, “Regional heterogeneity in immunoreactive macrophages/microglia in the rat pineal gland,” Journal of Pineal Research, vol. 35, no. 1, pp. 45–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. K.-O. Soderstrom, “Lectin binding to the human retina,” Anatomical Record, vol. 220, no. 2, pp. 219–223, 1988. View at Scopus
  45. F. Uehara, M. Sameshima, T. Muramatsu, and N. Ohba, “Localization of fluorescence-labeled lectin binding sites on photoreceptor cells of the monkey retina,” Experimental Eye Research, vol. 36, no. 1, pp. 113–123, 1983. View at Scopus
  46. H.-W. Korf, “The pineal organ as a component of the biological clock: phylogenetic and ontogenetic considerations,” Annals of the New York Academy of Sciences, vol. 719, pp. 13–42, 1994. View at Scopus
  47. E. Maronde and J. H. Stehle, “The mammalian pineal gland: known facts, unknown facets,” Trends in Endocrinology and Metabolism, vol. 18, no. 4, pp. 142–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. X.-M. Zhang and J. Zhu, “Kainic acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines,” Current Neuropharmacology, vol. 9, no. 2, pp. 388–398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Stellwagen and R. C. Malenka, “Synaptic scaling mediated by glial TNF-α,” Nature, vol. 440, no. 7087, pp. 1054–1059, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Maronde, M. Pfeffer, J. Olcese et al., “Transcription factors in neuroendocrine regulation: rhythmic changes in pCREB and ICER levels frame melatonin synthesis,” Journal of Neuroscience, vol. 19, no. 9, pp. 3326–3336, 1999. View at Scopus
  51. D. M. Bustos, M. J. Bailey, D. Sugden et al., “Global daily dynamics of the pineal transcriptome,” Cell and Tissue Research, vol. 344, no. 1, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. A. K. Moorthy, O. V. Savinova, J. Q. Ho, V. Y.-F. Wang, D. Vu, and G. Ghosh, “The 20S proteasome processes NF-κB1 p105 into p50 in a translation-independent manner,” EMBO Journal, vol. 25, no. 9, pp. 1945–1956, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Lin, G. N. DeMartino, and W. C. Greene, “Cotranslational biogenesis of NF-κB p50 by the 26S proteasome,” Cell, vol. 92, no. 6, pp. 819–828, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. H. W. L. Ziegler-Heitbrock, T. Sternsdorf, J. Liese et al., “Pyrrolidine dithiocarbamate inhibits NF-κB mobilization and TNF production in human monocytes,” Journal of Immunology, vol. 151, no. 12, pp. 6986–6993, 1993. View at Scopus
  55. C. E. Carvalho-Sousa, S. S. Cruz-Machado, E. K. Tamura, P. A. C. M. Fernandes, L. Pinato, et al., “Molecular basis for defining the pineal gland and pinealocytes as targets for tumor necrosis factor,” Frontiers in Endocrinology, vol. 2, pp. 1–11, 2011.
  56. M. P. Mattson, “NF-κB in the survival and plasticity of neurons,” Neurochemical Research, vol. 30, no. 6-7, pp. 883–893, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. P. A. C. M. Fernandes, E. Cecon, R. P. Markus, and Z. S. Ferreira, “Effect of TNF-α on the melatonin synthetic pathway in the rat pineal gland: basis for a 'feedback' of the immune response on circadian timing,” Journal of Pineal Research, vol. 41, no. 4, pp. 344–350, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. S.-Y. Tsai, T. E. O'Brien, and J. A. McNulty, “Microglia play a role in mediating the effects of cytokines on the structure and function of the rat pineal gland,” Cell and Tissue Research, vol. 303, no. 3, pp. 423–431, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. J. S. Bains and S. H. R. Oliet, “Glia: they make your memories stick!,” Trends in Neurosciences, vol. 30, no. 8, pp. 417–424, 2007. View at Publisher · View at Google Scholar · View at Scopus