About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 620793, 8 pages
http://dx.doi.org/10.1155/2013/620793
Research Article

Novel Natural Structure Corrector of ApoE4 for Checking Alzheimer’s Disease: Benefits from High Throughput Screening and Molecular Dynamics Simulations

1Apaji Institute of Mathematics & Applied Computer Technology, Banasthali University, Tonk, Rajasthan 304022, India
2School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
3Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
4Thematic Unit of Excellence on Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700098, India

Received 27 August 2013; Accepted 1 October 2013

Academic Editor: Zhongming Zhao

Copyright © 2013 Manisha Goyal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Alzheimer's Association: Alzheimer's disease facts and figures,” Alzheimer's & Dementia, vol. 8, pp. 1–67, 2012.
  2. P. S. Mathuranath, A. George, N. Ranjith, et al., “Incidence of Alzheimer's disease in India: a 10 years follow-up study,” Neurology India, vol. 60, no. 6, pp. 625–630, 2012. View at Publisher · View at Google Scholar
  3. M. J. Sadowski, J. Pankiewicz, H. Scholtzova et al., “Blocking the apolipoprotein E/amyloid-β interaction as a potential therapeutic approach for Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 49, pp. 18787–18792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. D. L. Price, D. R. Borchlet, L. J. Martin, B. J. Crain, S. S. Sisodiya, and J. C. Troncoso, “Neuropathology of Alzheimer's disease and animal models,” in Neuropathology of Dementing Disorders, W. R. Markesbery, Ed., pp. 121–141, 1998.
  5. E. L. Conway, “A review of the randomized controlled trials of tacrine in the treatment of Alzheimer's disease: methodologic considerations,” Clinical Neuropharmacology, vol. 21, no. 1, pp. 8–17, 1998. View at Scopus
  6. S. I. Gracon, M. J. Knapp, W. G. Berghoff et al., “Safety of tacrine: clinical trials, treatment IND, and postmarketing experience,” Alzheimer Disease and Associated Disorders, vol. 12, no. 2, pp. 93–101, 1998. View at Scopus
  7. R. Mayeux and M. Sano, “Treatment of Alzheimer's disease,” The New England Journal of Medicine, vol. 341, no. 22, pp. 1670–1679, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Ostrov, J. A. Hernández Prada, P. E. Corsino, K. A. Finton, N. Le, and T. C. Rowe, “Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 10, pp. 3688–3698, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Lleó, S. M. Greenberg, and J. H. Growdon, “Current pharmacotherapy for Alzheimer's disease,” Annual Review of Medicine, vol. 57, pp. 513–533, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. K. Sonkusare, C. L. Kaul, and P. Ramarao, “Dementia of Alzheimer's disease and other neurodegenerative disorders—memantine, a new hope,” Pharmacological Research, vol. 51, no. 1, pp. 1–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. K. H. Weisgraber, “Apolipoprotein E: structure-function relationships,” Advances in Protein Chemistry, vol. 45, pp. 249–302, 1994. View at Scopus
  12. W. J. Strittmatter, A. M. Saunders, D. Schmechel et al., “Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 5, pp. 1977–1981, 1993. View at Scopus
  13. E. H. Corder, A. M. Saunders, W. J. Strittmatter et al., “Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families,” Science, vol. 261, no. 5123, pp. 921–923, 1993. View at Scopus
  14. R. W. Mahley, K. H. Weisgraber, and Y. Huang, “Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 15, pp. 5644–5651, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. R. W. Mahley, K. H. Weisgraber, and Y. Huang, “Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer's disease to AIDS,” Journal of Lipid Research, supplement 50, pp. S183–S188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. W. Mahley and Y. Huang, “Alzheimer disease: multiple causes, multiple effects of apolipoprotein E4, and multiple therapeutic approaches,” Annals of Neurology, vol. 65, no. 6, pp. 623–625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Kim, J. M. Basak, and D. M. Holtzman, “The role of apolipoprotein E in Alzheimer's disease,” Neuron, vol. 63, no. 3, pp. 287–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L.-M. Dong, C. Wilson, M. R. Wardell et al., “Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms,” Journal of Biological Chemistry, vol. 269, no. 35, pp. 22358–22365, 1994. View at Scopus
  19. L.-M. Dong and K. H. Weisgraber, “Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins,” Journal of Biological Chemistry, vol. 271, no. 32, pp. 19053–19057, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. L. A. Farrer, L. A. Cupples, J. L. Haines et al., “Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis,” Journal of the American Medical Association, vol. 278, no. 16, pp. 1349–1356, 1997. View at Scopus
  21. R. W. Mahley, “Apolipoprotein E: cholesterol transport protein with expanding role in cell biology,” Science, vol. 240, no. 4852, pp. 622–630, 1988. View at Scopus
  22. R. W. Mahley and S. C. Rall Jr., “Apolipoprotein E: far more than a lipid transport protein,” Annual Review of Genomics and Human Genetics, vol. 1, no. 2000, pp. 507–537, 2000. View at Scopus
  23. K. H. Weisgraber and R. W. Mahley, “Human apolipoprotein E: the Alzheimer's disease connection,” FASEB Journal, vol. 10, no. 13, pp. 1485–1494, 1996. View at Scopus
  24. R. E. Tanzi and L. Bertram, “Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective,” Cell, vol. 120, no. 4, pp. 545–555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Hardy and D. J. Selkoe, “The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics,” Science, vol. 297, no. 5580, pp. 353–356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Blennow, M. J. de Leon, and H. Zetterberg, “Alzheimer's disease,” The Lancet, vol. 368, no. 9533, pp. 387–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. E. Risner, A. M. Saunders, J. F. B. Altman et al., “Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease,” Pharmacogenomics Journal, vol. 6, no. 4, pp. 246–254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Huang and R. W. Mahley, “Commentary on “perspective on a pathogenesis and treatment of Alzheimer's disease.” Apolipoprotein E and the mitochondrial metabolic hypothesis,” Alzheimer's & Dementia, vol. 2, no. 2, pp. 71–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. D. Roses and A. M. Saunders, “Perspective on a pathogenesis and treatment of Alzheimer's disease,” Alzheimer's & Dementia, vol. 2, no. 2, pp. 59–70, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. M. Saunders, M. K. Trowers, R. A. Shimkets et al., “The role of apolipoprotein E in Alzheimer's disease: pharmacogenomic target selection,” Biochimica et Biophysica Acta, vol. 1502, no. 1, pp. 85–94, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. E. M. Reiman, R. J. Caselli, K. Chen, G. E. Alexander, D. Bandy, and J. Frost, “Declining brain activity in cognitively normal apolipoprotein E ε4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3334–3339, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. E. M. Reiman, K. Chen, G. E. Alexander et al., “Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 1, pp. 284–289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. M. Saunders, W. J. Strittmatter, D. Schmechel et al., “Association of apolipoprotein E allele ε4 with late-onset familial and sporadic Alzheimer's disease,” Neurology, vol. 43, no. 8, pp. 1467–1472, 1993. View at Scopus
  34. M. A. Pericak-Vance, L. H. Yamaoka, C. S. Haynes et al., et al., “Genetic linkage studies in Alzheimer's disease families,” Experimental Neurology, vol. 102, no. 3, pp. 271–279, 1988. View at Scopus
  35. S. Ye, Y. Huang, K. Müllendorff et al., “Apolipoprotein (apo) E4 enhances amyloid β peptide production in cultured neuronal cells: ApoE structure as a potential therapeutic target,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 51, pp. 18700–18705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. H.-K. Chen, Z. Liu, A. Meyer-Franke et al., “Small molecule structure correctors abolish detrimental effects of apolipoprotein E4 in cultured neurons,” Journal of Biological Chemistry, vol. 287, no. 8, pp. 5253–5266, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. “Protein Data Bank,” http://www.rcsb.org/pdb/home/home.do.
  38. Schrodinger, Maestro, version 9, LLC, New York, NY, USA, 2009.
  39. S. Sreeramulu, H. R. A. Jonker, T. Langer, C. Richter, C. R. D. Lancaster, and H. Schwalbe, “The human Cdc37·Hsp90 complex studied by heteronuclear NMR spectroscopy,” Journal of Biological Chemistry, vol. 284, no. 6, pp. 3885–3896, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. T. A. Halgren, R. B. Murphy, R. A. Friesner et al., “Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening,” Journal of Medicinal Chemistry, vol. 47, no. 7, pp. 1750–1759, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. R. A. Friesner, J. L. Banks, R. B. Murphy et al., “Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy,” Journal of Medicinal Chemistry, vol. 47, no. 7, pp. 1739–1749, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Frieden and K. Garai, “Structural differences between apoE3 and apoE4 may be useful in developing therapeutic agents for Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 23, pp. 8913–8918, 2012. View at Publisher · View at Google Scholar
  43. J. J. Irwin and B. K. Shoichet, “ZINC—a free database of commercially available compounds for virtual screening,” Journal of Chemical Information and Modeling, vol. 45, no. 1, pp. 177–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. Schrodinger, Ligprep, version 2.3, LLC, New York, NY, USA, 2009.
  45. Schrodinger, Glide, version 5.5, LLC, New York, NY, USA, 2009.
  46. M. Sándor, R. Kiss, and G. M. Keseru, “Virtual fragment docking by glide: a validation study on 190 protein-fragment complexes,” Journal of Chemical Information and Modeling, vol. 50, no. 6, pp. 1165–1172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, “GROMACS: fast, flexible, and free,” Journal of Computational Chemistry, vol. 26, no. 16, pp. 1701–1718, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. D. A. Case, T. A. Darden, T. E. Cheatham, et al., AMBER 12, University of California, San Francisco, Calif, USA, 2012.