About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 621538, 9 pages
http://dx.doi.org/10.1155/2013/621538
Research Article

Proteomic Profiling Reveals Upregulated Protein Expression of Hsp70 in Keloids

1Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul 120-752, Republic of Korea
2Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul 120-752, Republic of Korea
3Yeouido Oracle Cosmetic & Dermatologic Surgery Clinic, Seoul, Republic of Korea

Received 4 April 2013; Revised 20 August 2013; Accepted 30 August 2013

Academic Editor: Alireza Sepehr

Copyright © 2013 Ju Hee Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. W. Kirscher, A. C. Thies, and M. Chvapil, “Perivascular myofibroblasts and microvascular occlusion in hypertrophic scars and keloids,” Human Pathology, vol. 13, no. 9, pp. 819–824, 1982. View at Scopus
  2. H. P. Ehrlich and A. L. Needle, “Wound healing in tight-skin mice: delayed closure of excised wounds,” Plastic and Reconstructive Surgery, vol. 72, no. 2, pp. 190–198, 1983. View at Scopus
  3. A. M. J. de Limpens and R. H. Cormane, “Studies on the immunologic aspects of keloids and hypertrophic scars,” Archives of Dermatological Research, vol. 274, no. 3-4, pp. 259–266, 1982. View at Scopus
  4. L. C. Ford, D. F. King, L. D. Lagasse, and V. Newcomer, “Increased androgen binding in keloids: a preliminary communication,” Journal of Dermatologic Surgery and Oncology, vol. 9, no. 7, pp. 545–547, 1983. View at Scopus
  5. P. Omo Dare, “Genetic studies on keloid,” Journal of the National Medical Association, vol. 67, no. 6, pp. 428–432, 1975. View at Scopus
  6. A. Burd and L. Huang, “Hypertrophic response and keloid diathesis: two very different forms of scar,” Plastic and reconstructive surgery, vol. 116, no. 7, pp. 150e–157e, 2005. View at Scopus
  7. F. B. Niessen, P. H. M. Spauwen, J. Schalkwijk, and M. Kon, “On the nature of hypertrophic scars and keloids: a review,” Plastic and Reconstructive Surgery, vol. 104, no. 5, pp. 1435–1458, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. T.-L. Tuan and L. S. Nichter, “The molecular basis of keloid and hypertrophic scar formation,” Molecular Medicine Today, vol. 4, no. 1, pp. 19–24, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Luo, M. Benathan, W. Raffoul, R. G. Panizzon, and D. V. Egloff, “Abnormal balance between proliferation and apoptotic cell death in fibroblasts derived from keloid lesions,” Plastic and Reconstructive Surgery, vol. 107, no. 1, pp. 87–96, 2001. View at Scopus
  10. E. E. Tredget, H. A. Shankowsky, R. Pannu et al., “Transforming growth factor-β in thermally injured patients with hypertrophic scars: effects of interferon α-2b,” Plastic and Reconstructive Surgery, vol. 102, no. 5, pp. 1317–1328, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Kikuchi, T. Kadono, and K. Takehara, “Effects of various growth factors and histamine on cultured keloid fibroblasts,” Dermatology, vol. 190, no. 1, pp. 4–8, 1995. View at Scopus
  12. M. E. Myles, J. D. Russell, J. S. Trupin, J. C. Smith, and S. B. Russell, “Keloid fibroblasts are refractory to inhibition of DNA synthesis by phorbol esters. Altered response is accompanied by reduced sensitivity to prostaglandin E2 and altered down-regulation of phorbol ester binding sites,” Journal of Biological Chemistry, vol. 267, no. 13, pp. 9014–9020, 1992. View at Scopus
  13. F. Javad and P. J. R. Day, “Protein profiling of keloidal scar tissue,” Archives of Dermatological Research, vol. 304, no. 7, pp. 533–540. View at Publisher · View at Google Scholar · View at Scopus
  14. C. T. Ong, Y. T. Khoo, A. Mukhopadhyay et al., “Comparative proteomic analysis between normal skin and keloid scar,” British Journal of Dermatology, vol. 162, no. 6, pp. 1302–1315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. R. I. Morimoto, “Cells in stress: transcriptional activation of heat shock genes,” Science, vol. 259, no. 5100, pp. 1409–1410, 1993. View at Scopus
  16. M. J. Schlesinger, “Heat shock proteins,” Journal of Biological Chemistry, vol. 265, no. 21, pp. 12111–12114, 1990. View at Scopus
  17. M. Atalay, N. Oksala, J. Lappalainen, D. E. Laaksonen, C. K. Sen, and S. Roy, “Heat shock proteins in diabetes and wound healing,” Current Protein and Peptide Science, vol. 10, no. 1, pp. 85–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Hu, W. Wu, C. F. Verschraegen et al., “Proteomic identification of heat shock protein 70 as a candidate target for enhancing apoptosis induced by farnesyl transferase inhibitor,” Proteomics, vol. 3, no. 10, pp. 1904–1911, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. J.-J. Chen, S. Zhao, Y. Cen, X.-X. Liu, R. Yu, and D.-M. Wu, “Effect of heat shock protein 47 on collagen accumulation in keloid fibroblast cells,” British Journal of Dermatology, vol. 156, no. 6, pp. 1188–1195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Tavaria, T. Gabriele, I. Kola, and R. L. Anderson, “A hitchhiker's guide to the human Hsp70 family,” Cell Stress & Chaperones, vol. 1, no. 1, pp. 23–28, 1996. View at Scopus
  21. Q. Zhang, Y. Wu, C. H. Chau, D. K. Ann, C. N. Bertolami, and A. D. Le, “Crosstalk of hypoxia-mediated signaling pathways in upregulating plasminogen activator inhibitor-1 expression in keloid fibroblasts,” Journal of Cellular Physiology, vol. 199, no. 1, pp. 89–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Zhang, C. K. Oh, D. V. Messadi et al., “Hypoxia-induced HIF-1 α accumulation is augmented in a co-culture of keloid fibroblasts and human mast cells: involvement of ERK1/2 and PI-3K/Akt,” Experimental Cell Research, vol. 312, no. 2, pp. 145–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. B. De Felice, R. R. Wilson, and M. Nacca, “Telomere shortening may be associated with human keloids,” BMC Medical Genetics, vol. 10, article 1471, p. 110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. L. Brodsky and G. Chiosis, “Hsp70 molecular chaperones: emerging roles in human disease and identification of small molecule modulators,” Current Topics in Medicinal Chemistry, vol. 6, no. 11, pp. 1215–1225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Garrido, S. Gurbuxani, L. Ravagnan, and G. Kroemer, “Heat shock proteins: endogenous modulators of apoptotic cell death,” Biochemical and Biophysical Research Communications, vol. 286, no. 3, pp. 433–442, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Sõti, E. Nagy, Z. Giricz, L. Vígh, P. Csermely, and P. Ferdinandy, “Heat shock proteins as emerging therapeutic targets,” British Journal of Pharmacology, vol. 146, no. 6, pp. 769–780, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. D. A. Ladin, Z. Hou, D. Patel et al., “p53 and apoptosis alterations in keloids and keloid fibroblasts,” Wound Repair and Regeneration, vol. 6, no. 1, pp. 28–37, 1998. View at Scopus
  28. B. Shih, E. Garside, D. A. McGrouther, and A. Bayat, “Molecular dissection of abnormal wound healing processes resulting in keloid disease,” Wound Repair and Regeneration, vol. 18, no. 2, pp. 139–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Totan, A. Echo, and E. Yuksel, “Heat shock proteins modulate keloid formation,” Eplasty, vol. 11, article e21, 2011.
  30. A. L. McMurtry, K. Cho, L. J.-T. Young, C. F. Nelson, and D. G. Greenhalgh, “Expression of HSP70 in healing wounds of diabetic and nondiabetic mice,” Journal of Surgical Research, vol. 86, no. 1, pp. 36–41, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. B. S. Polla, M. Bachelet, G. Elia, and M. G. Santoro, “Stress proteins in inflammation,” Annals of the New York Academy of Sciences, vol. 851, pp. 75–85, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. R. E. Barrow and M. R. K. Dasu, “Oxidative and heat stress gene changes in hypertrophic scar fibroblasts stimulated with interleukin-1β,” Journal of Surgical Research, vol. 126, no. 1, pp. 59–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Cao, N. Ohwatari, T. Matsumoto, M. Kosaka, A. Ohtsuru, and S. Yamashita, “TGF-β1 mediates 70-kDa heat shock protein induction due to ultraviolet irradiation in human skin fibroblasts,” Pflugers Archiv European Journal of Physiology, vol. 438, no. 3, pp. 239–244, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Capon and S. Mordon, “Can thermal lasers promote skin wound healing?” American Journal of Clinical Dermatology, vol. 4, no. 1, pp. 1–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. C.-H. Yun, S.-Y. Yoon, T. T. Nguyen et al., “Geldanamycin inhibits TGF-β signaling through induction of Hsp70,” Archives of Biochemistry and Biophysics, vol. 495, no. 1, pp. 8–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Satish, J. Lyons-Weiler, P. A. Hebda, and A. Wells, “Gene expression patterns in isolated keloid fibroblasts,” Wound Repair and Regeneration, vol. 14, no. 4, pp. 463–470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Peckham, G. Miller, C. Wells, D. Zicha, and G. A. Dunn, “Specific changes to the mechanism of cell locomotion induced by overexpression of β-actin,” Journal of Cell Science, vol. 114, part 7, pp. 1367–1377, 2001. View at Scopus
  38. F. Bey, I. S. Pereira, O. Coux et al., “The prosomal RNA-binding protein p27K is a member of the α-type human prosomal gene family,” Molecular and General Genetics, vol. 237, no. 1-2, pp. 193–205, 1993. View at Scopus
  39. H.-G. Nothwang, O. Coux, F. Bey, and K. Scherrer, “Prosomes and their multicatalytic proteinase activity,” European Journal of Biochemistry, vol. 207, no. 2, pp. 621–630, 1992. View at Publisher · View at Google Scholar · View at Scopus