About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 626083, 10 pages
http://dx.doi.org/10.1155/2013/626083
Research Article

Ultradeep Pyrosequencing of Hepatitis C Virus Hypervariable Region 1 in Quasispecies Analysis

1Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3c Pawińskiego Street, 02-106 Warsaw, Poland
2Postgraduate School of Molecular Medicine, Żwirki i Wigury 61 Street, 02-091 Warsaw, Poland
3Institute of Medical Virology, University of Zurich, Winterthurerstrasse, 190 8057 Zurich, Switzerland
4Department of Medical Genetics, Medical University of Warsaw, 3c Pawińskiego Street, 02-106 Warsaw, Poland
5Hospital for Infectious Diseases, 37 Wolska Street, 01-201 Warsaw, Poland

Received 22 October 2012; Accepted 12 February 2013

Academic Editor: Ozgur Cogulu

Copyright © 2013 Kamila Caraballo Cortés et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Martell, J. I. Esteban, J. Quer et al., “Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution,” Journal of Virology, vol. 66, no. 5, pp. 3225–3229, 1992. View at Scopus
  2. F. Kurbanov, Y. Tanaka, D. Avazova et al., “Detection of hepatitis C virus natural recombinant RF1_2k/1b strain among intravenous drug users in Uzbekistan,” Hepatology Research, vol. 38, no. 5, pp. 457–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Moreno, M. Alvarez, L. Lápez et al., “Evidence of recombination in Hepatitis C Virus populations infecting a hemophiliac patient,” Virology Journal, vol. 6, article 203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Cuevas, M. Torres-Puente, N. Jiménez-Hernández et al., “Refined analysis of genetic variability parameters in hepatitis C virus and the ability to predict antiviral treatment response,” Journal of Viral Hepatitis, vol. 15, no. 8, pp. 578–590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. E. A. Duarte, I. S. Novella, S. C. Weaver et al., “RNA virus quasispecies: significance for viral disease and epidemiology,” Infectious Agents and Disease, vol. 3, no. 4, pp. 201–214, 1994. View at Scopus
  6. T. Laskus, J. Wilkinson, J. F. Gallegos-Orozco et al., “Analysis of hepatitis C virus quasispecies transmission and evolution in patients infected through blood transfusion,” Gastroenterology, vol. 127, no. 3, pp. 764–776, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Barzon, E. Lavezzo, V. Militello, S. Toppo, and G. Palù, “Applications of next-generation sequencing technologies to diagnostic virology,” International Journal of Molecular Sciences, vol. 12, no. 11, pp. 7861–7884, 2011. View at Publisher · View at Google Scholar
  8. N. Beerenwinkel, H. F. Gunthard, V. Roth, and K. J. Metzner, “Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data,” Frontiers in Microbiology, vol. 3, article 329, 2012.
  9. N. Beerenwinkel, “Ultra-deep sequencing for the analysis of viral populations,” Current Opinion in Virology, vol. 1, no. 5, pp. 413–418, 2011. View at Publisher · View at Google Scholar
  10. S. Guglietta, A. R. Garbuglia, V. Pacciani et al., “Positive selection of cytotoxic T lymphocytes escape variants during acute hepatitis C virus infection,” European Journal of Immunology, vol. 35, no. 9, pp. 2627–2637, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Di Lorenzo, A. G. Angus, and A. H. Patel, “Hepatitis C virus evasion mechanisms from neutralizing antibodies,” Viruses, vol. 3, no. 11, pp. 2280–2300, 2011.
  12. A. Escobar-Gutierrez, M. Vazquez-Pichardo, M. Cruz-Rivera, et al., “Identification of hepatitis C virus transmission using a next-generation sequencing approach,” Journal of Clinical Microbiology, vol. 50, no. 4, pp. 1461–1463, 2012.
  13. R. A. Bull, F. Luciani, K. McElroy et al., “Sequential bottlenecks drive viral evolution in early acute hepatitis c virus infection,” PLoS Pathogens, vol. 7, no. 9, Article ID e1002243, 2011. View at Publisher · View at Google Scholar
  14. F. Bolcic, M. Sede, F. Moretti, et al., “Analysis of the PKR-eIF2alpha phosphorylation homology domain (PePHD) of hepatitis C virus genotype 1 in HIV-coinfected patients by ultra-deep pyrosequencing and its relationship to responses to pegylated interferon-ribavirin treatment,” Archives of Virology, vol. 157, no. 4, pp. 703–711, 2012.
  15. S. Fonseca-Coronado, A. Escobar-Gutierrez, K. Ruiz-Tovar, et al., “Specific detection of naturally occurring hepatitis C virus mutants with resistance to telaprevir and boceprevir (protease inhibitors) among treatment-naive infected individuals,” Journal of Clinical Microbiology, vol. 50, no. 2, pp. 281–287, 2012.
  16. O. Zagordi, A. Bhattacharya, N. Eriksson, and N. Beerenwinkel, “ShoRAH: estimating the genetic diversity of a mixed sample from next-generation sequencing data,” BMC Bioinformatics, vol. 12, article 119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Astrovskaya, B. Tork, S. Mangul, et al., “Inferring viral quasispecies spectra from 454 pyrosequencing reads,” BMC Bioinformatics, vol. 12, supplement 6, 2011.
  18. C. Quince, A. Lanzen, R. J. Davenport, and P. J. Turnbaugh, “Removing noise from pyrosequenced amplicons,” BMC Bioinformatics, vol. 12, article 38, 2011.
  19. P. Skums, Z. Dimitrova, D. S. Campo, et al., “Efficient error correction for next-generation sequencing of viral amplicons,” BMC Bioinformatics, vol. 13, Supplement 10, p. S6, 2012.
  20. M. Gerotto, F. Dal Pero, S. Loffreda, et al., “A 385 insertion in the hypervariable region 1 of hepatitis C virus E2 envelope protein is found in some patients with mixed cryoglobulinemia type 2,” Blood, vol. 98, no. 9, pp. 2657–2663, 2001.
  21. T. Laskus, M. Radkowski, L. F. Wang, M. Nowicki, and J. Rakela, “Uneven distribution of hepatitis C virus quasispecies in tissues from subjects with end-stage liver disease: confounding effect of viral adsorption and mounting evidence for the presence of low-level extrahepatic replication,” Journal of Virology, vol. 74, no. 2, pp. 1014–1017, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar
  23. K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees,” Molecular Biology and Evolution, vol. 10, no. 3, pp. 512–526, 1993. View at Scopus
  24. I. Malet, M. Belnard, H. Agut, and A. Cahour, “From RNA to quasispecies: a DNA polymerase with proofreading activity is highly recommended for accurate assessment of viral diversity,” Journal of Virological Methods, vol. 109, no. 2, pp. 161–170, 2003.
  25. J. Cline, J. C. Braman, and H. H. Hogrefe, “PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases,” Nucleic Acids Research, vol. 24, no. 18, pp. 3546–3551, 1996. View at Scopus
  26. A. Gilles, E. Meglécz, N. Pech, S. Ferreira, T. Malausa, and J. F. Martin, “Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing,” BMC Genomics, vol. 12, article 245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. B. B. Simen, J. F. Simons, K. H. Hullsiek, et al., “Low-abundance drug-resistant viral variants in chronically HIV-infected, antiretroviral treatment-naive patients significantly impact treatment outcomes,” Journal of Infectious Diseases, vol. 199, no. 5, pp. 693–701, 2009.
  28. X. Wu, T. Zhou, J. Zhu et al., “Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing,” Science, vol. 333, no. 6049, pp. 1593–1602, 2011. View at Publisher · View at Google Scholar
  29. A. Gonzalez-Serna, R. A. McGovern, P. R. Harrigan et al., “Correlation of the virological response to short-term maraviroc monotherapy with standard and deep-sequencing-based genotypic tropism prediction methods,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 3, pp. 1202–1207, 2012. View at Publisher · View at Google Scholar
  30. A. D. Redd, A. Collinson-Streng, C. Martens et al., “Identification of HIV superinfection in seroconcordant couples in Rakai, Uganda, by use of next-generation deep sequencing,” Journal of Clinical Microbiology, vol. 49, no. 8, pp. 2859–2867, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. G. T. Spear, M. Sikaroodi, M. R. Zariffard, A. L. Landay, A. L. French, and P. M. Gillevet, “Comparison of the diversity of the vaginal microbiota in HIV-infected and HIV-uninfected women with or without bacterial vaginosis,” Journal of Infectious Diseases, vol. 198, no. 8, pp. 1131–1140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Vandenbroucke, H. Van Marck, P. Verhasselt, et al., “Minor variant detection in amplicons using 454 massive parallel pyrosequencing: experiences and considerations for successful applications,” Biotechniques, vol. 51, no. 3, pp. 167–177, 2011.
  33. O. Zagordi, R. Klein, M. Däumer, and N. Beerenwinkel, “Error correction of next-generation sequencing data and reliable estimation of HIV quasispecies,” Nucleic Acids Research, vol. 38, no. 21, pp. 7400–7409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Eriksson, L. Pachter, Y. Mitsuya et al., “Viral population estimation using pyrosequencing,” PLoS Computational Biology, vol. 4, no. 4, Article ID e1000074, 2008. View at Scopus
  35. C. F. Wright, M. J. Morelli, G. Thébaud et al., “Beyond the consensus: dissecting within-host viral population diversity of foot-and-mouth disease virus by using next-generation genome sequencing,” Journal of Virology, vol. 85, no. 5, pp. 2266–2275, 2011. View at Publisher · View at Google Scholar · View at Scopus