About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 626910, 12 pages
http://dx.doi.org/10.1155/2013/626910
Review Article

Managing Lymphoma with Non-FDG Radiotracers: Current Clinical and Preclinical Applications

1Department of Experimental Diagnostic Imaging, Box 59, The University of TX MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
2Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA

Received 1 April 2013; Accepted 27 May 2013

Academic Editor: Mei-Hsiu Liao

Copyright © 2013 Fan-Lin Kong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. National Cancer Institute Surveillance, “E.a.E.R.S.P. SEER stat fact sheets: lymphoma,” 2011, http://seer.cancer.gov/statfacts/html/lymph.html.
  2. T. P. Miller, S. Dahlberg, J. R. Cassady et al., “Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate- and high-grade non-Hodgkin's lymphoma,” The New England Journal of Medicine, vol. 339, no. 1, pp. 21–26, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. Horning, R. T. Hoppe, J. Mason et al., “Stanford-Kaiser Permanente G1 study for clinical stage I to IIA Hodgkin's disease: subtotal lymphoid irradiation versus vinblastine, methotrexate, and bleomycin chemotherapy and regional irradiation,” Journal of Clinical Oncology, vol. 15, no. 5, pp. 1736–1744, 1997. View at Scopus
  4. M. A. Vermoolen, M. J. Kersten, R. Fijnheer, M. S. van Leeuwen, T. C. Kwee, and R. A. J. Nievelstein, “Magnetic resonance imaging of malignant lymphoma,” Expert Review of Hematology, vol. 4, no. 2, pp. 161–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. S. M. Ansell and J. O. Armitage, “Positron emission tomographic scans in lymphoma: convention and controversy,” Mayo Clinic Proceedings, vol. 87, no. 6, pp. 571–580, 2012.
  6. A. K. Buck, M. Bommer, S. Stilgenbauer et al., “Molecular imaging of proliferation in malignant lymphoma,” Cancer Research, vol. 66, no. 22, pp. 11055–11061, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. J. Cerci, E. Trindade, V. Buccheri et al., “Consistency of FDG-PET accuracy and cost-effectiveness in initial staging of patients with hodgkin lymphoma across jurisdictions,” Clinical Lymphoma, Myeloma and Leukemia, vol. 11, no. 4, pp. 314–320, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Zanoni, J. J. Cerci, and S. Fanti, “Use of PET/CT to evaluate response to therapy in lymphoma,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 55, no. 6, pp. 633–647, 2011. View at Scopus
  9. C. Burton, P. Ell, and D. Linch, “The role of PET imaging in lymphoma,” The British Journal of Haematology, vol. 126, no. 6, pp. 772–784, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. F. Shields, J. R. Grierson, B. M. Dohmen et al., “Imaging proliferation in vivo with [F-18]FLT and positron emission tomography,” Nature Medicine, vol. 4, no. 11, pp. 1334–1336, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Barthel, M. Perumal, J. Latigo et al., “The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels,” The European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 3, pp. 257–263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Yue, L. Chen, A. R. Cabrera et al., “Measuring tumor cell proliferation with 18F-flt pet during radiotherapy of esophageal squamous cell carcinoma: a pilot clinical study,” Journal of Nuclear Medicine, vol. 51, no. 4, pp. 528–534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Schöder, A. Noy, M. Gönen et al., “Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin's lymphoma,” Journal of Clinical Oncology, vol. 23, no. 21, pp. 4643–4651, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Herrmann, A. K. Buck, T. Schuster et al., “A pilot study to evaluate 3′-deoxy-3′-18F- fluorothymidine PET for initial and early response imaging in mantle cell lymphoma,” Journal of Nuclear Medicine, vol. 52, no. 12, pp. 1898–1902, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. C. H. Moskowitz, H. Schöder, J. Teruya-Feldstein et al., “Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in advanced-stage diffuse large B-cell lymphoma,” Journal of Clinical Oncology, vol. 28, no. 11, pp. 1896–1903, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Herrmann, A. K. Buck, T. Schuster et al., “Predictive value of initial 18F-FLT uptake in patients with aggressive non-hodgkin lymphoma receiving R-CHOP treatment,” Journal of Nuclear Medicine, vol. 52, no. 5, pp. 690–696, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Herrmann, H. A. Wieder, A. K. Buck et al., “Early response assessment using 3′-deoxy-3′-[ 18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin's lymphoma,” Clinical Cancer Research, vol. 13, no. 12, pp. 3552–3558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Leskinen-Kallio, U. Ruotsalainen, K. Nagren, M. Teras, and H. Joensuu, “Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin's lymphoma: a PET study,” Journal of Nuclear Medicine, vol. 32, no. 6, pp. 1211–1218, 1991. View at Scopus
  19. J. Nuutinen, S. Leskinen, P. Lindholm et al., “Use of carbon-11 methionine positron emission tomography to assess malignancy grade and predict survival in patients with lymphomas,” The European Journal of Nuclear Medicine, vol. 25, no. 7, pp. 729–735, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Sutinen, S. Jyrkkiö, M. Varpula et al., “Nodal staging of lymphoma with whole-body PET: comparison of [11C]methionine and FDG,” Journal of Nuclear Medicine, vol. 41, no. 12, pp. 1980–1988, 2000. View at Scopus
  21. Y. Kawase, Y. Yamamoto, R. Kameyama, N. Kawai, N. Kudomi, and Y. Nishiyama, “Comparison of11C-methionine PET and 18F-FDG PET in patients with primary central nervous system lymphoma,” Molecular Imaging and Biology, vol. 13, no. 6, pp. 1284–1289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Kawai, S. Okubo, K. Miyake et al., “Use of PET in the diagnosis of primary CNS lymphoma in patients with atypical MR findings,” Annals of Nuclear Medicine, vol. 24, no. 5, pp. 335–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Ogawa, I. Kanno, J. Hatazawa et al., “Methionine PET for follow-up of radiation therapy of primary lymphoma of the brain,” Radiographics, vol. 14, no. 1, pp. 101–110, 1994. View at Scopus
  24. D. Front and O. Israel, “Present state and future role of gallium-67 scintigraphy in lymphoma,” Journal of Nuclear Medicine, vol. 37, no. 3, pp. 530–532, 1996. View at Scopus
  25. L. Kostakoglu and S. J. Goldsmith, “Fluorine-18 fluorodeoxyglucose positron emission tomography in the staging and follow-up of lymphoma: is it time to shift gears?” The European Journal of Nuclear Medicine, vol. 27, no. 10, pp. 1564–1578, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Lin, J. Chu, A. Kneebone et al., “Direct comparison of 18F-fluorodeoxyglucose coincidence gamma camera tomography with gallium scanning for the staging of lymphoma,” Internal Medicine Journal, vol. 35, no. 2, pp. 91–96, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. W. Friedberg, A. Fischman, D. Neuberg et al., “FDG-PET is superior to gallium scintigraphy in staging and more sensitive in the follow-up of patients with de novo Hodgkin lymphoma: a blinded comparison,” Leukemia and Lymphoma, vol. 45, no. 1, pp. 85–92, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. S. S. Foo, P. L. Mitchell, S. U. Berlangieri, C. L. Smith, and A. M. Scott, “Positron emission tomography scanning in the assessment of patients with lymphoma,” Internal Medicine Journal, vol. 34, no. 7, pp. 388–397, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Palumbo, S. Sivolella, I. Palumbo, A. M. Liberati, and R. Palumbo, “67Ga-SPECT/CT with a hybrid system in the clinical management of lymphoma,” The European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 9, pp. 1011–1017, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Lin, W. T. Leung, S. K. W. Ho et al., “Quantitative evaluation of thallium-201 uptake in predicting chemotherapeutic response of osteosarcoma,” The European Journal of Nuclear Medicine, vol. 22, no. 6, pp. 553–555, 1995. View at Scopus
  31. A. Ando, I. Ando, and M. Katayama, “Biodistributions of 201Tl in tumor bearing animals and inflammatory lesion induced animals,” The European Journal of Nuclear Medicine, vol. 12, no. 11, pp. 567–572, 1987. View at Scopus
  32. R. L. M. Haas, R. A. Valdés-Olmos, C. A. Hoefnagel et al., “Thallium-201-chloride scintigraphy in staging and monitoring radiotherapy response in follicular lymphoma patients,” Radiotherapy and Oncology, vol. 69, no. 3, pp. 323–328, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Kostakoglu and S. J. Goldsmith, “Lymphoma imaging: nuclear medicine,” Cancer Treatment and Research, vol. 131, pp. 363–412, 2006. View at Scopus
  34. A. S. Arbab, K. Koizumi, S. Hiraike, K. Toyama, T. Arai, and T. Araki, “Will thallium-201 replace gallium-67 in salivary gland scintigraphy?” Journal of Nuclear Medicine, vol. 37, no. 11, pp. 1819–1823, 1996. View at Scopus
  35. M. Lorberboym, L. Estok, J. Machac et al., “Rapid differential diagnosis of cerebral toxoplasmosis and primary central nervous system lymphoma by thallium-201 SPECT,” Journal of Nuclear Medicine, vol. 37, no. 7, pp. 1150–1154, 1996. View at Scopus
  36. M. Lorberboym, F. Wallach, L. Estok et al., “Thallium-201 retention in focal intracranial lesions for differential diagnosis of primary lymphoma and nonmalignant lesions in AIDS patients,” Journal of Nuclear Medicine, vol. 39, no. 8, pp. 1366–1369, 1998. View at Scopus
  37. D. J. Skiest, W. Erdman, W. E. Chang, O. K. Oz, A. Ware, and J. Fleckenstein, “SPECT thallium-201 combined with Toxoplasma serology for the presumptive diagnosis of focal central nervous system mass lesions in patients with AIDS,” Journal of Infection, vol. 40, no. 3, pp. 274–281, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. O. Schillaci, A. Spanu, and G. Madeddu, “[99mTc]sestamibi and [99mTc]tetrofosmin in oncology: SPET and fusion imaging in lung cancer, malignant lymphomas and brain tumors,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 49, no. 2, pp. 133–144, 2005. View at Scopus
  39. C. Rodriguez, T. Commes, J. Robert, and J.-F. Rossi, “Expression of P-glycoprotein and anionic glutathione S-transferase genes in non-Hodgkin's lymphoma,” Leukemia Research, vol. 17, no. 2, pp. 149–156, 1993. View at Publisher · View at Google Scholar · View at Scopus
  40. Q. Liu, K. Ohshima, and M. Kikuchi, “High expression of MDR-1 gene and P-glycoprotein in initial and re-biopsy specimens of relapsed B-cell lymphoma,” Histopathology, vol. 38, no. 3, pp. 209–216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Piwnica-Worms, M. L. Chiu, M. Budding, J. F. Kronauge, R. A. Kramer, and J. M. Croop, “Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex,” Cancer Research, vol. 53, no. 5, pp. 977–984, 1993. View at Scopus
  42. V. V. Rao, M. L. Chiu, J. F. Kronauge, and D. Piwnica-Worms, “Expression of recombinant human multidrug resistance P-glycoprotein in insect cells confers decreased accumulation of technetium-99m-sestamibi,” Journal of Nuclear Medicine, vol. 35, no. 3, pp. 510–515, 1994. View at Scopus
  43. L. Kostakoglu, N. Elahi, P. Kïratlï et al., “Clinical validation of the influence of P-glycoprotein on technetium-99m-sestamibi uptake in malignant tumors,” Journal of Nuclear Medicine, vol. 38, no. 7, pp. 1003–1008, 1997. View at Scopus
  44. H.-C. Song, J.-J. Lee, H.-S. Bom et al., “Double-phase Tc-99m MIBI scintigraphy as a therapeutic predictor in patients with non-Hodgkin's lymphoma,” Clinical Nuclear Medicine, vol. 28, no. 6, pp. 457–462, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. C. H. Kao, S. C. Tsai, J. J. Wang, Y. J. Ho, S. T. Ho, and S. P. Changlai, “Evaluation of chemotherapy response using technetium-99M-sestamibi scintigraphy in untreated adult malignant lymphomas and comparison with other prognosis factors: a preliminary report,” International Journal of Cancer, vol. 95, no. 4, pp. 228–231, 2001.
  46. J.-A. Liang, Y.-C. Shiau, S.-N. Yang et al., “Using technetium-99m-tetrofosmin scan to predict chemotherapy response of malignant lymphomas, compared with P-glycoprotein and multidrug resistance related protein expression,” Oncology Reports, vol. 9, no. 2, pp. 307–312, 2002. View at Scopus
  47. A. Lazarowski, J. Dupont, J. Fernández et al., “99mTechnetium-SESTAMIBI uptake in malignant lymphomas. Correlation with chemotherapy response,” Lymphatic Research and Biology, vol. 4, no. 1, pp. 23–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. J. D. Kelly, A. M. Forster, B. Higley et al., “Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging,” Journal of Nuclear Medicine, vol. 34, no. 2, pp. 222–227, 1993. View at Scopus
  49. H.-J. Ding, Y.-C. Shiau, S.-C. Tsai, J.-J. Wang, S.-T. Ho, and A. Kao, “Uptake of 99mTc tetrofosmin in lymphoma cell lines: a comparative study with 99mTc sestamibi,” Applied Radiation and Isotopes, vol. 56, no. 6, pp. 853–856, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. R. M. Aigner, G. F. Fueger, W. Zinke, and H. Sill, “99Tcm-tetrofosmin scintigraphy in Hodgkin's disease,” Nuclear Medicine Communications, vol. 18, no. 3, pp. 252–257, 1997. View at Scopus
  51. D. Ferone, C. Semino, M. Boschetti, G. L. Cascini, F. Minuto, and S. Lastoria, “Initial staging of lymphoma with octreotide and other receptor imaging agents,” Seminars in Nuclear Medicine, vol. 35, no. 3, pp. 176–185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Valencak, F. Trautinger, M. Raderer et al., “Somatostatin receptor scintigraphy in primary cutaneous T- and B-cell lymphomas,” Journal of the European Academy of Dermatology and Venereology, vol. 24, no. 1, pp. 13–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Raderer, T. Traub, M. Formanek et al., “Somatostatin-receptor scintigraphy for staging and follow-up of patients with extraintestinal marginal zone B-cell lymphoma of the mucosa associated lymphoid tissue (MALT)-type,” The British Journal of Cancer, vol. 85, no. 10, pp. 1462–1466, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Raderer, J. Valencak, F. Pfeffel et al., “Somatostatin receptor expression in primary gastric versus nongastric extranodal B-cell lymphoma of mucosa-associated lymphoid tissue type,” Journal of the National Cancer Institute, vol. 91, no. 8, pp. 716–718, 1999. View at Scopus
  55. S. Li, A. Kurtaran, M. Li et al., “111In-DOTA-DPhe1-Tyr3-octreotide, 111In-DOTA-lanreotide and 67Ga citrate scintigraphy for visualisation of extranodal marginal zone B-cell lymphoma of the MALT type: a comparative study,” The European Journal of Nuclear Medicine and Molecular Imaging, vol. 30, no. 8, pp. 1087–1095, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Iagaru, M. L. Goris, and S. S. Gambhir, “Perspectives of molecular imaging and radioimmunotherapy in lymphoma,” Radiologic Clinics of North America, vol. 46, no. 2, pp. 243–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. D. G. Maloney, “Anti-CD20 antibody therapy for B-cell lymphomas,” The New England Journal of Medicine, vol. 366, no. 21, pp. 2008–2016, 2012.
  58. T. Alcindor and T. E. Witzig, “Radioimmunotherapy with yttrium-90 ibritumomab tiuxetan for patients with relapsed CD20+ B-cell non-Hodgkin's lymphoma,” Current Treatment Options in Oncology, vol. 3, no. 4, pp. 275–282, 2002. View at Scopus
  59. T. M. Behr, F. Griesinger, J. Riggert, S. Gratz, M. Behe, C. C. Kaufmann, et al., “High-dose myeloablative radioimmunotherapy of mantle cell non-Hodgkin lymphoma with the iodine-131-labeled chimeric anti-CD20 antibody C2B8 and autologous stem cell support. Results of a pilot study,” Cancer, vol. 94, no. 4, Supplement, pp. 1363–1372, 2002.
  60. L. I. Gordon, T. E. Witzig, G. A. Wiseman et al., “Yttrium 90 ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory low-grade non-hodgkin's lymphoma,” Seminars in Oncology, vol. 29, no. 1, pp. 87–92, 2002. View at Scopus
  61. M. F. Leahy and J. H. Turner, “Radioimmunotherapy of relapsed indolent non-Hodgkin lymphoma with 131I-rituximab in routine clinical practice: 10-year single-institution experience of 142 consecutive patients,” Blood, vol. 117, no. 1, pp. 45–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Hagemeister, “Rituximab for the treatment of non-hodgkins lymphoma and chronic lymphocytic leukaemia,” Drugs, vol. 70, no. 3, pp. 261–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. M. E. Juweid, “Radioimmunotherapy of B-cell non-Hodgkin's lymphoma: from clinical trials to clinical practice,” Journal of Nuclear Medicine, vol. 43, no. 11, pp. 1507–1529, 2002. View at Scopus
  64. A. Iagaru, S. S. Gambhir, and M. L. Goris, “90Y-ibritumomab therapy in refractory non-Hodgkin's lymphoma: observations from 111In-ibritumomab pretreatment imaging,” Journal of Nuclear Medicine, vol. 49, no. 11, pp. 1809–1812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. F. M. Iwamoto, J. Schwartz, N. Pandit-Taskar et al., “Study of radiolabeled indium-111 and yttrium-90 ibritumomab tiuxetan in primary central nervous system lymphoma,” Cancer, vol. 110, no. 11, pp. 2528–2534, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Otte, “Diagnostic imaging prior to 90Y-ibritumomab tiuxetan (Zevalin) treatment in follicular non-Hodgkin's lymphoma,” Hellenic Journal of Nuclear Medicine, vol. 11, no. 1, pp. 12–15, 2008. View at Scopus
  67. P. S. Conti, C. White, P. Pieslor, A. Molina, J. Aussie, and P. Foster, “The role of imaging with 111In-ibritumomab tiuxetan in the ibritumomab tiuxetan (Zevalin) regimen: results from a Zevalin Imaging Registry,” Journal of Nuclear Medicine, vol. 46, no. 11, pp. 1812–1818, 2005. View at Scopus
  68. D. R. Fisher, S. Shen, and R. F. Meredith, “MIRD dose estimate report No. 20: radiation aBsorbed-dose estimates for111In-And90Y-ibritumomab Tiuxetan,” Journal of Nuclear Medicine, vol. 50, no. 4, pp. 644–652, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. G. A. Wiseman, E. Kornmehl, B. Leigh et al., “Radiation dosimetry results and safety correlations from 90Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin's lymphoma: combined data from 4 clinical trials,” Journal of Nuclear Medicine, vol. 44, no. 3, pp. 465–474, 2003. View at Scopus
  70. L. R. Perk, O. J. Visser, M. S. Walsum et al., “Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography,” The European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 11, pp. 1337–1345, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. S. N. F. Rizvi, O. J. Visser, M. J. W. D. Vosjan et al., “Biodistribution, radiation dosimetry and scouting of 90Y- ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin's lymphoma using 89Zr-ibritumomab tiuxetan and PET,” The European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 3, pp. 512–520, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. G. A. Wiseman, B. Leigh, W. D. Erwin et al., “Radiation dosimetry results for Zevalin radioimmunotherapy of rituximab-refractory non-Hodgkin lymphoma,” Cancer, vol. 94, no. 4, supplement, pp. 1349–1357, 2002. View at Scopus
  73. B. Andemariam and J. P. Leonard, “Radioimmunotherapy with tositumomab and iodine-131 tositumomab for non-Hodgkin's lymphoma,” Biologics, vol. 1, no. 2, pp. 113–120, 2007. View at Scopus
  74. H. A. Jacene, R. Filice, W. Kasecamp, and R. L. Wahl, “Comparison of 90Y-ibritumomab tiuxetan and 131I- tositumomab in clinical practice,” Journal of Nuclear Medicine, vol. 48, no. 11, pp. 1767–1776, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Song, Y. Du, G. Sgouros, A. Prideaux, E. Frey, and R. L. Wahl, “Therapeutic potential of 90Y- and131I-labeled anti-CD20 monoclonal antibody in treating non-Hodgkin's lymphoma with pulmonary involvement: a Monte Carlo-based dosimetric analysis,” Journal of Nuclear Medicine, vol. 48, no. 1, pp. 150–157, 2007. View at Scopus
  76. M. S. Kaminski, J. Estes, K. R. Zasadny et al., “Radioimmunotherapy with iodine131I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience,” Blood, vol. 96, no. 4, pp. 1259–1266, 2000. View at Scopus
  77. V. Lewington, “Development of 131I-tositumomab,” Seminars in Oncology, vol. 32, supplement 1, pp. S50–S56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Iagaru, E. S. Mittra, K. Ganjoo, S. J. Knox, and M. L. Goris, “131I-tositumomab (Bexxar) vs.90Y-ibritumomab (Zevalin) therapy of low-grade refractory/relapsed non-hodgkin lymphoma,” Molecular Imaging and Biology, vol. 12, no. 2, pp. 198–203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. S. J. Horning, A. Younes, V. Jain et al., “Efficacy and safety of tositumomab and iodine-131 tositumomab (Bexxar) in B-cell lymphoma, progressive after rituximab,” Journal of Clinical Oncology, vol. 23, no. 4, pp. 712–719, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. J. H. Turner, A. A. Martindale, J. Boucek, P. G. Claringbold, and M. F. Leahy, “131I-anti CD20 radioimmunotherapy of relapsed or refractory non-Hodgkins lymphoma: a phase II clinical trial of a nonmyeloablative dose regimen of chimeric rituximab radiolabeled in a hospital,” Cancer Biotherapy and Radiopharmaceuticals, vol. 18, no. 4, pp. 513–524, 2003. View at Scopus
  81. K. Scheidhauer, I. Wolf, H.-J. Baumgartl et al., “Biodistribution and kinetics of 131I-labelled anti-CD20 MAB IDEC-C2B8 (rituximab) in relapsed non-Hodgkin's lymphoma,” The European Journal of Nuclear Medicine, vol. 29, no. 10, pp. 1276–1282, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. M. S. Kaminski, K. R. Zasadny, I. R. Francis et al., “Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody,” The New England Journal of Medicine, vol. 329, no. 7, pp. 459–465, 1993. View at Publisher · View at Google Scholar · View at Scopus
  83. M. E. Juweid, “Radioimmunotherapy with 131I-rituximab: what we know and what we don't know,” Cancer Biotherapy and Radiopharmaceuticals, vol. 18, no. 4, pp. 489–495, 2003. View at Scopus
  84. T. Olafsen, D. Betting, V. E. Kenanova et al., “Recombinant anti-CD20 antibody fragments for small-animal PET imaging of B-cell lymphomas,” Journal of Nuclear Medicine, vol. 50, no. 9, pp. 1500–1508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Smith, M. Glaser, M. Perumal et al., “Design, synthesis, and biological characterization of a caspase 3/7 selective isatin labeled with 2-[18F]fluoroethylazide,” Journal of Medicinal Chemistry, vol. 51, no. 24, pp. 8057–8067, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. Q.-D. Nguyen, G. Smith, M. Glaser, M. Perumal, E. Årstad, and E. O. Aboagye, “Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific [18F]-labeled isatin sulfonamide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 38, pp. 16375–16380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. B. Holzmann, U. Gosslar, and M. Bittner, “α4 integrins and tumor metastasis,” Current Topics in Microbiology and Immunology, vol. 231, pp. 125–141, 1997. View at Scopus
  88. S. J. Denardo, R. Liu, H. Albrecht et al., “111In-LLP2A-DOTA polyethylene glycol-targeting α4β1 integrin: comparative pharmacokinetics for imaging and therapy of lymphoid malignancies,” Journal of Nuclear Medicine, vol. 50, no. 4, pp. 625–634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. A. L. Zwingenberger, M. S. Kent, R. Liu et al., “In-vivo biodistribution and safety of99mTc-LLP2A-hynic in canine non-hodgkin lymphoma,” Plos One, vol. 7, no. 4, Article ID e34404, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. L. S. Zuckier, “Hybrid imaging in planar scintigraphy: new implementations and historical precedents,” Seminars in Nuclear Medicine, vol. 42, no. 1, pp. 62–72, 2012. View at Publisher · View at Google Scholar · View at Scopus