About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 627907, 9 pages
http://dx.doi.org/10.1155/2013/627907
Research Article

Modulation of the Rat Hepatic Cytochrome P4501A Subfamily Using Biotin Supplementation

Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, 04510 México, DF, Mexico

Received 14 April 2013; Accepted 2 July 2013

Academic Editor: Anastasia Kotanidou

Copyright © 2013 M. D. Ronquillo-Sánchez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Dakshinamurti, “Biotin—a regulator of gene expression,” The Journal of Nutritional Biochemistry, vol. 16, no. 7, pp. 419–423, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Zempleni, “Uptake, localization, and noncarboxylase roles of biotin,” Annual Review of Nutrition, vol. 25, pp. 175–196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Rodriguez-Melendez and J. Zempleni, “Regulation of gene expression by biotin (review),” The Journal of Nutritional Biochemistry, vol. 14, no. 12, pp. 680–690, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Wiedmann, J. D. Eudy, and J. Zempleni, “Biotin supplementation increases expression of genes encoding interferon-γ, interleukin-1β, and 3-methylcrotonyl-CoA carboxylase, and decreases expression of the gene encoding interleukin-4 in human peripheral blood mononuclear cells,” Journal of Nutrition, vol. 133, no. 3, pp. 716–719, 2003. View at Scopus
  5. S. Wiedmann, R. Rodriguez-Melendez, D. Ortega-Cuellar, and J. Zempleni, “Clusters of biotin-responsive genes in human peripheral blood mononuclear cells,” The Journal of Nutritional Biochemistry, vol. 15, no. 7, pp. 433–439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Fernández-Mejía, “A new panorama for understanding the molecular connections between obesity and type 2 diabetes mellitus,” Revista de Investigacion Clinica, vol. 53, no. 3, pp. 209–211, 2001. View at Scopus
  7. R. Rodriguez-Melendez, J. B. Griffin, J. Zempleni, and G. Sarath, “High-throughput immunoblotting identifies biotin-dependent signaling proteins in HepG2 hepatocarcinoma cells,” Journal of Nutrition, vol. 135, no. 7, pp. 1659–1666, 2005. View at Scopus
  8. J. Chauhan and K. Dakshinamurti, “Transcriptional regulation of the glucokinase gene by biotin in starved rats,” The Journal of Biological Chemistry, vol. 266, no. 16, pp. 10035–10038, 1991. View at Scopus
  9. L. A. de la Vega and R. J. Stockert, “Regulation of the insulin and asialoglycoprotein receptors via cGMP-dependent protein kinase,” American Journal of Physiology, vol. 279, no. 6, pp. C2037–C2042, 2000. View at Scopus
  10. K. Dakshinamurti and W. Li, “Transcriptional regulation of liver phosphoenolpyruvate carboxykinase by biotin in diabetic rats,” Molecular and Cellular Biochemistry, vol. 132, no. 2, pp. 127–132, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Vilches-Flores, A. R. Tovar, A. Marin-Hernandez, A. Rojas-Ochoa, and C. Fernandez-Mejia, “Biotin increases glucokinase expression via soluble guanylate cyclase/protein kinase G, adenosine triphosphate production and autocrine action of insulin in pancreatic rat islets,” The Journal of Nutritional Biochemistry, vol. 21, no. 7, pp. 606–612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Romero-Navarro, G. Cabrera-Valladares, M. S. German et al., “Biotin regulation of pancreatic glucokinase and insulin in primary cultured rat islets and in biotin-deficient rats,” Endocrinology, vol. 140, no. 10, pp. 4595–4600, 1999. View at Scopus
  13. Y. Sugita, H. Shirakawa, R. Sugimoto, Y. Furukawa, and M. Komai, “Effect of biotin treatment on hepatic gene expression in streptozotocin-induced diabetic rats,” Bioscience, Biotechnology and Biochemistry, vol. 72, no. 5, pp. 1290–1298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Larrieta, F. Velasco, P. Vital et al., “Pharmacological concentrations of biotin reduce serum triglycerides and the expression of lipogenic genes,” European Journal of Pharmacology, vol. 644, no. 1–3, pp. 263–268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. C. Coggeshall, J. P. Heggers, M. C. Robson, et al., “Biotin status and plasma glucose in diabetics,” Annals of the New York Academy of Sciences, vol. 447, pp. 389–392, 1985. View at Publisher · View at Google Scholar
  16. M. Maebashi, Y. Makino, Y. Furukawa, et al., “Therapeutic evaluation of the effect of biotin on hyperglycemia in patients with non-insulin dependent diabetes mellitus,” Journal of Clinical Biochemistry and Nutrition, vol. 14, pp. 211–218, 1993. View at Publisher · View at Google Scholar
  17. D. Koutsikos, C. Fourtounas, A. Kapetanaki et al., “Oral glucose tolerance test after high-dose i.v. biotin administration in normoglucemic hemodialysis patients,” Renal Failure, vol. 18, no. 1, pp. 131–137, 1996. View at Scopus
  18. O. K. Dokusova and I. V. Krivoruchenko, “The effect of biotin on the level of cholesterol in the blood of patients with atherosclerosis and essential hyperlipidemia,” Kardiologiya, vol. 12, no. 12, p. 113, 1972. View at Scopus
  19. C. Revilla-Monsalve, I. Zendejas-Ruiz, S. Islas-Andrade et al., “Biotin supplementation reduces plasma triacylglycerol and VLDL in type 2 diabetic patients and in nondiabetic subjects with hypertriglyceridemia,” Biomedicine and Pharmacotherapy, vol. 60, no. 4, pp. 182–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Albarracin, B. Fuqua, J. Geohas, et al., “Improvement in glycemic control, lipids and insulin sensitivity with the combination of chromium picolinate and biotin in type 2 diabetes mellitus,” Diabetes Care, vol. 54, pp. 428–433, 2005.
  21. G. M. Singer and J. Geohas, “The effect of chromium picolinate and biotin supplementation on glycemic control in poorly controlled patients with type 2 diabetes mellitus: a placebo-controlled, double-blinded, randomized trial,” Diabetes Technology and Therapeutics, vol. 8, no. 6, pp. 636–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Z. Fiume, “Final report on the safety assessment of biotin,” International Journal of Toxicology, vol. 20, supplement 4, pp. 1–12, 2001. View at Scopus
  23. S. Hayes, A. Gordon, I. Sadowski, and C. Hayes, “RK bacterial test for independently measuring chemical toxicity and mutagenicity: short-term forward selection assay,” Mutation Research, vol. 130, no. 2, pp. 97–106, 1984. View at Scopus
  24. T. H. Ma, M. M. Harris, and V. A. Anderson, “Tradescantia-micronucleus (Trad-MCN) tests on 140 health-related agents,” Mutation Research, vol. 138, no. 2-3, pp. 157–167, 1984. View at Scopus
  25. SRI-International, “Microbial mutagenesis testing of substances compound report:F76-041, D-Biotin,” Tech. Rep. PB89-169072, National Technical Information Service, 1979.
  26. R. Rodriguez-Melendez, J. B. Griffin, and J. Zempleni, “Biotin supplementation increases expression of the cytochrome P450 1B1 gene in Jurkat cells, increasing the occurrence of single-stranded DNA breaks,” Journal of Nutrition, vol. 134, no. 9, pp. 2222–2228, 2004. View at Scopus
  27. Y. Fujii-Kuriyama and K. Kawajiri, “Molecular mechanisms of the physiological functions of the aryl hydrocarbon (dioxin) receptor, a multifunctional regulator that senses and responds to environmental stimuli,” Proceedings of the Japan Academy B, vol. 86, no. 1, pp. 40–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. D. W. Nebert, “The Ah locus: genetic differences in toxicity, cancer, mutation, and birth defects,” Critical Reviews in Toxicology, vol. 20, no. 3, pp. 153–174, 1989. View at Scopus
  29. S. Rendic, “Summary of information on human CYP enzymes: human P450 metabolism data,” Drug Metabolism Reviews, vol. 34, no. 1-2, pp. 83–448, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. D. M. Maron and B. N. Ames, “Revised methods for the Salmonella mutagenicity test,” Mutation Research, vol. 113, no. 3-4, pp. 173–215, 1983. View at Scopus
  31. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  32. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Scopus
  33. M. D. Burke, S. Thompson, R. J. Weaver, C. R. Wolf, and R. T. Mayer, “Cytochrome P450 specificities of alkoxyresorufin O-dealkylation in human and rat liver,” Biochemical Pharmacology, vol. 48, no. 5, pp. 923–936, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4350–4354, 1979. View at Scopus
  35. F. P. Guengerich, P. Wang, and N. K. Davidson, “Estimation of isozymes of microsomal cytochrome P-450 in rats, rabbits, and humans using immunochemical staining coupled with sodium dodecyl sulfate-polyacrylamide gel electrophoresis,” Biochemistry, vol. 21, no. 7, pp. 1698–1706, 1982. View at Scopus
  36. K. Dakshinamurti, L. Tarrago-Litvak, and H. C. Hong, “Biotin and glucose metabolism,” Canadian Journal of Biochemistry, vol. 48, no. 4, pp. 493–500, 1970. View at Scopus
  37. S. F. Zhou, B. Wang, L. P. Yang, and J. P. Liu, “Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2,” Drug Metabolism Reviews, vol. 42, no. 2, pp. 268–354, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. T. Granfors, J. T. Backman, M. Neuvonen, and P. J. Neuvonen, “Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2-mediated presystemic metabolism,” Clinical Pharmacology and Therapeutics, vol. 76, no. 6, pp. 598–606, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Hu, X. Yang, P. C. L. Ho et al., “Herb-drug interactions: a literature review,” Drugs, vol. 65, no. 9, pp. 1239–1282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. B. D. Jeffy, R. B. Chirnomas, and D. F. Romagnolo, “Epigenetics of breast cancer: polycyclic aromatic hydrocarbons as risk factors,” Environmental and Molecular Mutagenesis, vol. 39, no. 2-3, pp. 235–244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Shou, K. W. Krausz, F. J. Gonzalez, and H. V. Gelboin, “Metabolic activation of the potent carcinogen dibenzo[a,l]pyrene by human recombinant cytochromes P450, lung and liver microsomes,” Carcinogenesis, vol. 17, no. 11, pp. 2429–2433, 1996. View at Scopus
  42. L. Cancino-Badías, R. E. Reyes, R. Nosti et al., “Modulation of rat liver cytochrome P450 by protein restriction assessed by biochemical and bacterial mutagenicity methods,” Mutagenesis, vol. 18, no. 1, pp. 95–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Aguilera-Méndez and C. Fernández-Mejía, “The hypotriglyceridemic effect of biotin supplementation involves increased levels of cGMP and AMPK activation,” Biofactors, vol. 38, no. 5, pp. 387–395, 2012.
  44. N. Rodríguez-Fuentes, I. López-Rosas, G. Román-Cisneros, and A. Velázquez-Arellano, “Biotin deficiency affects both synthesis and degradation of pyruvate carboxylase in rat primary hepatocyte cultures,” Molecular Genetics and Metabolism, vol. 92, no. 3, pp. 222–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Chen and N. Rajewsky, “The evolution of gene regulation by transcription factors and microRNAs,” Nature Reviews Genetics, vol. 8, no. 2, pp. 93–103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Eulalio, I. Behm-Ansmant, and E. Izaurralde, “P bodies: at the crossroads of post-transcriptional pathways,” Nature Reviews Molecular Cell Biology, vol. 8, no. 1, pp. 9–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. S. P. Chan and F. J. Slack, “microRNA-mediated silencing inside P-bodies,” RNA Biology, vol. 3, no. 3, pp. 97–100, 2006. View at Scopus
  48. Y. Z. Pan, W. Gao, and A. M. Yu, “MicroRNAs regulate CYP3A4 expression via direct and indirect targeting,” Drug Metabolism and Disposition, vol. 37, no. 10, pp. 2112–2117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Tsuchiya, M. Nakajima, S. Takagi, T. Taniya, and T. Yokoi, “MicroRNA regulates the expression of human cytochrome P450 1B1,” Cancer Research, vol. 66, no. 18, pp. 9090–9098, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Mohri, M. Nakajima, T. Fukami, M. Takamiya, Y. Aoki, and T. Yokoi, “Human CYP2E1 is regulated by miR-378,” Biochemical Pharmacology, vol. 79, no. 7, pp. 1045–1052, 2010. View at Publisher · View at Google Scholar · View at Scopus