About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 628064, 16 pages
http://dx.doi.org/10.1155/2013/628064
Research Article

Ouabain-Induced Apoptosis in Cochlear Hair Cells and Spiral Ganglion Neurons In Vitro

1Department of Otorhinolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
2Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA

Received 4 July 2013; Accepted 16 August 2013

Academic Editor: Antoni Camins

Copyright © 2013 Yong Fu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Rajasekaran and S. A. Rajasekaran, “Role of Na-K-ATPase in the assembly of tight junctions,” The American Journal of Physiology—Renal Physiology, vol. 285, no. 3, pp. F388–F396, 2003. View at Scopus
  2. J. H. Kaplan, “Biochemistry of Na,K-ATPase,” Annual Review of Biochemistry, vol. 71, pp. 511–535, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Geering, A. Beggah, P. Good et al., “Oligomerization and maturation of Na,K-ATPase: functional interaction of the cytoplasmic NH2 terminus of the β subunit with the α subunit,” Journal of Cell Biology, vol. 133, no. 6, pp. 1193–1204, 1996. View at Scopus
  4. M. Hamada and R. S. Kimura, “Morphological changes induced by administration of a Na+,K+-ATPase inhibitor in normal and hydropic inner ears of the guinea pig,” Acta Oto-Laryngologica, vol. 119, no. 7, pp. 778–786, 1999. View at Scopus
  5. I. Ichimiya, J. C. Adams, and R. S. Kimura, “Immunolocalization of Na+,K+-ATPase, Ca++-ATPase, calcium-binding proteins, and carbonic anhydrase in the guinea pig inner ear,” Acta Oto-Laryngologica, vol. 114, no. 2, pp. 167–176, 1994. View at Scopus
  6. W. Kuijpers and S. L. Bonting, “Studies on (Na+-K+)-activated ATPase XXIV. Localization and properties of ATPase in the inner ear of the guinea pig,” Biochimica et Biophysica Acta, vol. 173, no. 3, pp. 477–485, 1969. View at Scopus
  7. W. J. F. T. Cate, L. M. Curtis, and K. E. Rarey, “Na,K-ATPase α and β subunit isoform distribution in the rat cochlear and vestibular tissuese,” Hearing Research, vol. 75, no. 1-2, pp. 151–160, 1994. View at Scopus
  8. K. Nakazawa, S. S. Spicer, and B. A. Schulte, “Ultrastructural localization of Na,K-ATPase in the gerbil cochlea,” Journal of Histochemistry and Cytochemistry, vol. 43, no. 10, pp. 981–991, 1995. View at Scopus
  9. W. J. McLean, K. A. Smith, E. Glowatzki, and S. J. Pyott, “Distribution of the Na,K-ATPase α subunit in the rat spiral ganglion and organ of corti,” Journal of the Association for Research in Otolaryngology, vol. 10, no. 1, pp. 37–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Z. Pitovski and T. P. Kerr, “Sodium- and potassium-activated ATPase in the mammalian vestibular system,” Hearing Research, vol. 171, no. 1-2, pp. 51–65, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. B. A. Schulte and J. C. Adams, “Distribution of immunoreactive Na+,K+-ATPase in gerbil cochlea,” Journal of Histochemistry and Cytochemistry, vol. 37, no. 2, pp. 127–134, 1989. View at Scopus
  12. M. Souter and A. Forge, “Intercellular junctional maturation in the stria vascularis: possible association with onset and rise of endocochlear potential,” Hearing Research, vol. 119, no. 1-2, pp. 81–95, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Okamura, S. S. Spicer, and B. A. Schulte, “Developmental expression of monocarboxylate transporter in the gerbil inner ear,” Neuroscience, vol. 107, no. 3, pp. 499–505, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. T. A. Peters, W. Kuijpers, and J. H. A. J. Curfs, “Occurrence of NaK-ATPase isoforms during rat inner ear development and functional implications,” European Archives of Oto-Rhino-Laryngology, vol. 258, no. 2, pp. 67–73, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Xia, T. Kikuchi, K. Hozawa, Y. Katori, and T. Takasaka, “Expression of connexin 26 and Na,K-ATPase in the developing mouse cochlear lateral wall: functional implications,” Brain Research, vol. 846, no. 1, pp. 106–111, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Erichsen, S. Berger, W. Schmid, P. Stierna, and M. Hultcrantz, “Na,K-ATPase expression in the mouse cochlea is not dependent on the mineralocorticoid receptor,” Hearing Research, vol. 160, no. 1-2, pp. 37–46, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Zuo, L. M. Curtis, X. Yao, W. J. F. T. Cate, and K. E. Rarey, “Expression of Na, K-ATPase α and β isoforms in the neonatal rat cochlea,” Acta Oto-Laryngologica, vol. 115, no. 4, pp. 497–503, 1995. View at Scopus
  18. T. Sagara, H. Furukawa, K. Makishima, and S. Fujimoto, “Differentiation of the rat stria vascularis,” Hearing Research, vol. 83, no. 1-2, pp. 121–132, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Kuijpers, A. C. van der Vleuten, and S. L. Bontino, “Cochlear function and sodium and potassium activated adenosine triphosphatase,” Science, vol. 157, no. 3791, pp. 949–950, 1967. View at Scopus
  20. T. Konishi and M. Mendelsohn, “Effect of ouabain on cochlear potentials and endolymph composition in guinea pigs,” Acta Oto-Laryngologica, vol. 69, no. 3, pp. 192–199, 1970. View at Scopus
  21. W. Kuijpers and S. L. Bonting, “The cochlear potentials—I: the effect of ouabain on the cochlear potentials of the guinea pig,” Pflügers Archiv, vol. 320, no. 4, pp. 348–358, 1970. View at Publisher · View at Google Scholar · View at Scopus
  22. P. M. Sellick and B. M. Johnstone, “Differential effects of ouabain and ethacrynic acid on the labyrinthine potentials,” Pflügers Archiv, vol. 352, no. 4, pp. 339–350, 1974. View at Scopus
  23. S. K. Bosher, “The effects of inhibition of the strial Na+-K+-activated ATPase by perilymphatic ouabain in the guinea pig,” Acta Oto-Laryngologica, vol. 90, no. 3-4, pp. 219–229, 1980. View at Scopus
  24. D. C. Marcus, N. Y. Marcus, and R. Thalmann, “Changes in cation contents of stria vascularis with ouabain and potassium-free perfusion,” Hearing Research, vol. 4, no. 2, pp. 149–160, 1981. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Wangemann, J. Liu, and D. C. Marcus, “Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro,” Hearing Research, vol. 84, no. 1-2, pp. 19–29, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Konishi and A. N. Salt, “Permeability to potassium of the endolymph-perilymph barrier and its possible relation to hair cell function,” Experimental Brain Research, vol. 40, no. 4, pp. 457–463, 1980. View at Scopus
  27. H. Lang, B. A. Schulte, and R. A. Schmiedt, “Ouabain induces apoptotic cell death in type I spiral ganglion neurons, but not type II neurons,” Journal of the Association for Research in Otolaryngology, vol. 6, no. 1, pp. 63–74, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Lang, M. Li, L. A. Kilpatrick et al., “Sox2 up-regulation and glial cell proliferation following degeneration of spiral ganglion neurons in the adult mouse inner ear,” Journal of the Association for Research in Otolaryngology, vol. 12, no. 2, pp. 151–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. A. Schmiedt, H. O. Okamura, H. Lang, and B. A. Schulte, “Ouabain application to the round window of the gerbil cochlea: a model of auditory neuropathy and apoptosis,” Journal of the Association for Research in Otolaryngology, vol. 3, no. 3, pp. 223–233, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. L. E. Wang, K. L. Cao, S. K. Yin, Z. Wang, and Z. Chen, “Cochlear function after selective spiral ganglion cells degeneration induced by ouabain,” Chinese Medical Journal, vol. 119, no. 12, pp. 974–979, 2006. View at Scopus
  31. M. N. Rivolta, H. Li, and S. Heller, “Generation of inner ear cell types from embryonic stem cells,” Methods in Molecular Biology, vol. 330, pp. 71–92, 2006. View at Scopus
  32. A. J. Matsuoka, T. Kondo, R. T. Miyamoto, and E. Hashino, “Enhanced survival of bone-marrow-derived pluripotent stem cells in an animal model of auditory neuropathy,” Laryngoscope, vol. 117, no. 9, pp. 1629–1635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Lang, B. A. Schulte, J. C. Goddard et al., “Transplantation of mouse embryonic stem cells into the cochlea of an auditory-neuropathy animal model: effects of timing after injury,” Journal of the Association for Research in Otolaryngology, vol. 9, no. 2, pp. 225–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. F u, D. Ding, H. Jiang, and R. Salvi, “Ouabain-induced cochlear degeneration in rat,” Neurotoxicity Research, vol. 22, no. 2, pp. 158–169, 2012. View at Publisher · View at Google Scholar
  35. D. Ding, A. Stracher, and R. J. Salvi, “Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity,” Hearing Research, vol. 164, no. 1-2, pp. 115–126, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Ding, J. He, B. L. Allman et al., “Cisplatin ototoxicity in rat cochlear organotypic cultures,” Hearing Research, vol. 282, no. 1-2, pp. 196–203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. S. L. McFadden, D. Ding, D. Salvemini, and R. J. Salvi, “M40403, a superoxide dismutase mimetic, protects cochlear hair cells from gentamicin, but not cisplatin toxicity,” Toxicology and Applied Pharmacology, vol. 186, no. 1, pp. 46–54, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Zhang, W. Liu, D. Ding, and R. Salvi, “Pifithrin-α supresses p53 and protects cochlear and vestibular hair cells from cisplatin-induced apoptosis,” Neuroscience, vol. 120, no. 1, pp. 191–205, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Corbacella, I. Lanzoni, D. Ding, M. Previati, and R. Salvi, “Minocycline attenuates gentamicin induced hair cell loss in neonatal cochlear cultures,” Hearing Research, vol. 197, no. 1-2, pp. 11–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. T. M. Nicotera, D. Ding, S. L. McFadden, D. Salvemini, and R. Salvi, “Paraquat-induced hair cell damage and protection with the superoxide dismutase mimetic M40403,” Audiology and Neuro-Otology, vol. 9, no. 6, pp. 353–362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. W. Qi, D. Ding, and R. J. Salvi, “Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures,” Hearing Research, vol. 236, no. 1-2, pp. 52–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Wei, D. Ding, and R. Salvi, “Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling,” Neuroscience, vol. 168, no. 1, pp. 288–299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Ding, H. Jiang, P. Wang, and R. Salvi, “Cell death after co-administration of cisplatin and ethacrynic acid,” Hearing research, vol. 226, no. 1-2, pp. 129–139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Ding, H. Jiang, and R. J. Salvi, “Mechanisms of rapid sensory hair-cell death following co-administration of gentamicin and ethacrynic acid,” Hearing Research, vol. 259, no. 1-2, pp. 16–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. B. H. Hu, Q. Cai, S. Manohar et al., “Differential expression of apoptosis-related genes in the cochlea of noise-exposed rats,” Neuroscience, vol. 161, no. 3, pp. 915–925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Hara, O. Urayama, K. Kawakami et al., “The third type of alpha-subunit of Na,K-ATPase,” Progress in clinical and biological research, vol. 268, pp. 73–78, 1988. View at Scopus
  48. A. R. Fetoni, S. L. Eramo, R. Rolesi, D. Troiani, and G. Paludetti, “Antioxidant treatment with coenzyme Q-ter in prevention of gentamycin ototoxicity in an animal model,” Acta Otorhinolaryngologica Italica, vol. 32, no. 2, pp. 103–110, 2012.
  49. W. C. Golden and L. J. Martin, “Low-dose ouabain protects against excitotoxic apoptosis and up-regulates nuclear Bcl-2 in vivo,” Neuroscience, vol. 137, no. 1, pp. 133–144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Wei, H. Xiao, Y. Jiang, C. Yang, and N. Zheng, “Low dose of ouabain protects injury of spiral ganglion neurons in vitro,” Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, vol. 23, no. 1, pp. 27–31, 2009. View at Scopus
  51. M. F. Segura, C. Sole, M. Pascual et al., “The long form of Fas apoptotic inhibitory molecule is expressed specifically in neurons and protects them against death receptor-triggered apoptosis,” Journal of Neuroscience, vol. 27, no. 42, pp. 11228–11241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. E. H. Humphreys, K. T. Williams, D. H. Adams, and S. C. Afford, “Primary and malignant cholangiocytes undergo CD40 mediated fas dependent apoptosis, but are insensitive to direct activation with exogenous fas ligand,” PLoS ONE, vol. 5, no. 11, Article ID e14037, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. J. T. Tigno-Aranjuez, J. M. Asara, and D. W. Abbott, “Inhibition of RIP2's tyrosine kinase activity limits NOD2-driven cytokine responses,” Genes and Development, vol. 24, no. 23, pp. 2666–2677, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Haupt, M. Berger, Z. Goldberg, and Y. Haupt, “Apoptosis—the p53 network,” Journal of Cell Science, vol. 116, no. 20, pp. 4077–4085, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. D. L. Persons, E. M. Yazlovitskaya, and J. C. Pelling, “Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin,” The Journal of Biological Chemistry, vol. 275, no. 46, pp. 35778–35785, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Krajewski, M. Krajewska, L. M. Ellerby et al., “Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 10, pp. 5752–5757, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. L. R. E. Harrison, D. Micha, M. Brandenburg et al., “Hypoxic human cancer cells are sensitized to BH-3 mimetic-induced apoptosis via downregulation of the Bcl-2 protein Mcl-1,” Journal of Clinical Investigation, vol. 121, no. 3, pp. 1075–1087, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Du, J. Wolf, B. Schafer, T. Moldoveanu, J. E. Chipuk, and T. Kuwana, “BH3 domains other than bim and bid can directly activate bax/bak,” The Journal of Biological Chemistry, vol. 286, no. 1, pp. 491–501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Z. Carter, Y. H. Qiu, N. Zhang et al., “Expression of ARC (apoptosis repressor with caspase recruitment domain), an antiapoptotic protein, is strongly prognostic in AML,” Blood, vol. 117, no. 3, pp. 780–787, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Bandyopadhyay, C. Y. Chiang, J. Srivastava et al., “A human MAP kinase interactome,” Nature Methods, vol. 7, no. 10, pp. 801–805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. J. K. Brunelle and A. Letai, “Control of mitochondrial apoptosis by the Bcl-2 family,” Journal of Cell Science, vol. 122, no. 4, pp. 437–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. Q. L. Deveraux, N. Roy, H. R. Stennicke et al., “IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases,” EMBO Journal, vol. 17, no. 8, pp. 2215–2223, 1998. View at Publisher · View at Google Scholar · View at Scopus
  63. S. A. Park, H. J. Park, B. I. Lee, Y. H. Ahn, S. U. Kim, and K. S. Choi, “Bcl-2 blocks cisplatin-induced apoptosis by suppression of ERK-mediated p53 accumulation in B104 cells,” Molecular Brain Research, vol. 93, no. 1, pp. 18–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Palacios and U. M. Moll, “Mitochondrially targeted wild-type p53 suppresses growth of mutant p53 lymphomas in vivo,” Oncogene, vol. 25, no. 45, pp. 6133–6139, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. T. H. Jang, J. Y. Bae, O. K. Park et al., “Identification and analysis of dominant negative mutants of RAIDD and PIDD,” Biochimica et Biophysica Acta, vol. 1804, no. 7, pp. 1557–1563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Kulikov, A. Eva, U. Kirch, A. Boldyrev, and G. Scheiner-Bobis, “Ouabain activates signaling pathways associated with cell death in human neuroblastoma,” Biochimica Et Biophysica Acta, vol. 1768, no. 7, pp. 1691–1702, 2007. View at Publisher · View at Google Scholar
  67. A. V. Pshezhetsky, “Proteomic analysis of vascular smooth muscle cells treated with ouabain,” Methods in Molecular Biology, vol. 357, pp. 253–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Taurin, V. Seyrantepe, S. N. Orlov et al., “Proteome analysis and functional expression identify mortalin as an antiapoptotic gene induced by elevation of [Na+]i/[K+]i ratio in cultured vascular smooth muscle cells,” Circulation Research, vol. 91, no. 10, pp. 915–922, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. H. H. Park and H. Wu, “Crystal structure of RAIDD death domain implicates potential mechanism of PIDDosome assembly,” Journal of Molecular Biology, vol. 357, no. 2, pp. 358–364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. Q. S. Tong, L. D. Zheng, L. Wang et al., “Downregulation of XIAP expression induces apoptosis and enhances chemotherapeutic sensitivity in human gastric cancer cells,” Cancer Gene Therapy, vol. 12, no. 5, pp. 509–514, 2005. View at Publisher · View at Google Scholar · View at Scopus