About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 630683, 7 pages
http://dx.doi.org/10.1155/2013/630683
Research Article

Bovine Papillomavirus Clastogenic Effect Analyzed in Comet Assay

1Laboratório de Genética, Instituto Butantan, Avenida Vital Brasil, 1500, Butantã, 05503-900 São Paulo, SP, Brazil
2Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 2415 Edifício ICB-III-Cidade Universitária, 05508-900 São Paulo, SP, Brazil
3Programa de Pós-graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, Rua Botucatu, 740, 04023-900 São Paulo, SP, Brazil
4Departamento de Biologia, Universidade Federal da Integração Latino-Americana (UNILA), Avenida Tancredo Neves, 6731 bloco 4, 85867-970 Foz do Iguaçú, PR, Brazil

Received 26 March 2013; Accepted 8 May 2013

Academic Editor: Franco Roperto

Copyright © 2013 R. P. Araldi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Stocco dos Santos, C. J. Lindsey, O. P. Ferraz et al., “Bovine papillomavirus transmission and chromosomal aberrations: an experimental model,” Journal of General Virology, vol. 79, no. 9, pp. 2127–2135, 1998. View at Scopus
  2. A. C. de Freitas, C. de Carvalho, O. Brunner et al., “Viral DNA sequences in peripheral blood and vertical transmission of the virus: a discussion about BPV-1,” Brazilian Journal of Microbiology, vol. 34, no. 1, pp. 76–78, 2003. View at Scopus
  3. Z.-M. Zheng and C. C. Baker, “Papillomavirus genome structure, expression, and post-transcriptional regulation,” Frontiers in Bioscience, vol. 11, no. 1, pp. 2286–2302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. C. Freitas, M. A. R. Silva, C. C. R. Carvalho et al., “Papillomavirus DNAdetectionin non-epithelial tissue: adiscussion about bovine papillomavirus,” in Communicating Current Research and Educational Topics and Trends in Applied Microbiology, pp. 697–704, 2007.
  5. S. Roperto, R. Brun, F. Paolini et al., “Detection of bovine papillomavirus type 2 in the peripheral blood of cattle with urinary bladder tumours: possible biological role,” Journal of General Virology, vol. 89, no. 12, pp. 3027–3033, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. You, “Papillomavirus interaction with cellular chromatin,” Biochimica et Biophysica Acta, vol. 1799, no. 3-4, pp. 192–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. C. Freitas, A. R. M. Silva, A. L. S. Jesus et al., “Recent insights into bovine papillomavirus,” African Journal of Microbiology Research, vol. 5, no. 33, pp. 6004–6012, 2011. View at Scopus
  8. C. de Carvalho, A. C. de Freitas, O. Brunner et al., “Bovine papillomavirus type 2 in reproductive tract and gametes of slaughtered bovine females,” Brazilian Journal of Microbiology, vol. 34, no. 1, pp. 82–84, 2003. View at Scopus
  9. M. Lunardi, A. A. Alfieri, R. A. A. Otonel et al., “Genetic characterization of a novel bovine papillomavirus member of the Deltapapillomavirus genus,” Veterinary Microbiology, vol. 162, no. 1, pp. 207–213, 2013.
  10. J. DeMasi, M. C. Chao, A. S. Kumar, and P. M. Howley, “Bovine papillomavirus E7 oncoprotein inhibits anoikis,” Journal of Virology, vol. 81, no. 17, pp. 9419–9425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C. J. Lindsey, M. E. Almeida, C. F. Vicari et al., “Bovine papillomavirus DNA in milk, blood, urine, semen, and spermatozoa of bovine papillomavirus-infected animals,” Genetics and Molecular Research, vol. 8, no. 1, pp. 310–318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. R. C. Campos, C. Trindade, O. P. Ferraz et al., “Can established cultured papilloma cells harbor bovine papillomavirus?” Genetics and Molecular Research, vol. 7, no. 4, pp. 1119–1126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Zhu, J. Dong, E. Shimizu et al., “Characterization of novel bovine papillomavirus type 12 (BPV-12) causing epithelial papilloma,” Archives of Virology, vol. 157, no. 1, pp. 85–91, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Östling and K. Johanson, “Microeletrophoretic study of radiation-induced DNA damages in individual mammalian cells,” Biochemical and Biophysical Research Communications, vol. 123, pp. 291–298, 1984. View at Publisher · View at Google Scholar
  15. N. P. Singh, M. T. McCoy, R. R. Tice, and E. L. Schneider, “A simple technique for quantitation of low levels of DNA damage in individual cells,” Experimental Cell Research, vol. 175, no. 1, pp. 184–191, 1988. View at Scopus
  16. P. Escobar, “New applications of the Comet Assay in genetic toxicology testing,” in Proceedings of the Genetic Toxicology Association Meeting, September 2008.
  17. S. A. S. Langie, K. M. Cameron, K. J. Waldron, K. P. R. Fletcher, T. von Zglinicki, and J. C. Mathers, “Measuring DNA repair incision activity of mouse tissue extracts towards singlet oxygen-induced DNA damage: a comet-based in vitro repair assay,” Mutagenesis, vol. 26, no. 3, pp. 461–471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Khoei, S. Delfan, A. Neshasteh-Riz, and S. R. Mahdavi, “Evaluation of the combined effect of 2ME2 and 60Co on the inducement of DNA damage by IUdR in a spheroid model of the U87MG glioblastoma cancer cell line using alkaline comet assay,” Cell Journal, vol. 13, no. 2, pp. 83–90, 2011. View at Scopus
  19. R. Fabiani, P. Rosignoli, A. de Bartolomeo, R. Fuccelli, and G. Morozzi, “Genotoxicity of alkene epoxides in human peripheral blood mononuclear cells and HL60 leukaemia cells evaluated with the comet assay,” Mutation Research, vol. 747, pp. 1–6, 2012. View at Publisher · View at Google Scholar
  20. J. D. C. Dias, M. D. C. Sgnacchiti, P. G. G. Giuriato, L. C. Nunes, and O. S. Pereira-Júnior, “Detecção do papilomavírus bovino tipo 2 em bexigas de bovinos com hematúria enzoótica pela técnica de reação de cadeia de polimerase no Sul do Espírito Santo,” Revista Brasileira de Medicina Veterinária, vol. 34, pp. 146–151, 2012.
  21. A. Yaguiu, M. L. Z. Dagli, E. H. Birgel Jr. et al., “Simultaneous presence of bovine papillomavirus and bovine leukemia virus in different bovine tissues: in situ hybridization and cytogenetic analysis,” Genetics and Molecular Research, vol. 7, no. 2, pp. 487–497, 2008. View at Scopus
  22. T. A. Hall, “BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT,” Nucleic Acids Symposium Series, vol. 41, pp. 95–98, 1999.
  23. S. Duensing and K. Münger, “The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability,” Cancer Research, vol. 62, no. 23, pp. 7075–7082, 2002. View at Scopus
  24. Y. Liu and J. D. Baleja, “Structure and function of the papillomavirus E6 protein and its interacting proteins,” Frontiers in Bioscience, vol. 13, no. 1, pp. 121–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Wade, N. Brimer, and S. Vande Pol, “Transformation by bovine papillomavirus type 1 E6 requires paxillin,” Journal of Virology, vol. 82, no. 12, pp. 5962–5966, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. T. C. Melo, N. Diniz, S. R. C. Campos et al., “Cytogenetic studies in peripheral blood of bovines afflicted by papillomatosis,” Veterinary and Comparative Oncology, vol. 9, no. 4, pp. 269–274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. B. Primrose and R. M. Twyman, Principles of Gene Manipulation and Genomics, Blackwell Scientific Publications, Oxford, UK, 7th edition, 2006.
  28. G. B. Cavalcanti-Júnior, C. E. Klumb, and R. C. Maia, “p53 e as hemopatias malignas,” Revista Brasileira de Cancerologia, vol. 48, pp. 419–442, 2002.
  29. M. O'Driscoll and P. A. Jeggo, “The role of double-strand break repair—insights from human genetics,” Nature Reviews Genetics, vol. 7, no. 1, pp. 45–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Kanaar, J. H. J. Hoeijmakers, and D. C. van Gent, “Molecular mechanisms of DNA double-strand break repair,” Trends in Cell Biology, vol. 8, no. 12, pp. 483–489, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Shrivastav, L. P. de Haro, and J. A. Nickoloff, “Regulation of DNA double-strand break repair pathway choice,” Cell Research, vol. 18, no. 1, pp. 134–147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Collins, D. Anderson, E. Coskun et al., “Launch of the ComNet (Comet-Network) project on the comet assay in human population studies during the International Comet Assay Workshop Meeting in Kusadasi, Turkey (September 13–16, 2011),” Mutagenesis, vol. 27, pp. 385–386, 2012.
  33. B. K. Wobeser, J. E. Hill, M. L. Jackson et al., “Localization of Bovine papillomavirus in equine sarcoids and inflammatory skin conditions of horses using laser microdissection and two forms of DNA amplification,” Journal of Veterinary Diagnostic Investigation, vol. 24, no. 1, pp. 32–41, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Roperto, S. Comazzi, E. Ciusani et al., “PBMCS are additional sites of productive infection of bovine papillomavirus type 2,” Journal of General Virology, vol. 92, no. 8, pp. 1787–1794, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Hartl, E. K. Hainisch, S. Shafti-Keramat et al., “Inoculation of young horses with bovine papillomavirus type 1 virions leads to early infection of PBMCS prior to pseudo-sarcoid formation,” Journal of General Virology, vol. 92, no. 10, pp. 2437–2445, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. C. T. Leung and J. S. Brugge, “Outgrowth of single oncogene-expressing cells from suppressive epithelial environments,” Nature, vol. 482, no. 7385, pp. 410–413, 2012. View at Publisher · View at Google Scholar · View at Scopus