About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 635143, 8 pages
http://dx.doi.org/10.1155/2013/635143
Research Article

Protective Efficacy of N-(2-Hydroxyphenyl) Acetamide against Adjuvant-Induced Arthritis in Rats

1Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
2H.E.J. Research Institute of Chemistry, International Center of Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan

Received 9 April 2013; Revised 14 June 2013; Accepted 27 June 2013

Academic Editor: Akio Hiura

Copyright © 2013 Kahkashan Perveen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Rheumatoid arthritis is a chronic inflammatory joint disease characterized by synovial proliferation and tissue destruction. Proinflammatory cytokines like interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) play a key role in the disease process and elevate energy expenditure, which further increases the joint pain and stiffness. To explore the effects of N-(2-hydroxyphenyl) acetamide (NA-2) on the development of arthritis, clinical signs, histopathology of knee joints, nociception analysis, and the serum levels of IL-1β and TNF-α were monitored. Arthritis was induced by intradermal administration of heat-killed adjuvant Mycobacterium tuberculosis H37Ra in rats. NA-2 and indomethacin treatments were started in their respective group on the same day when adjuvant was administered. Experiments were terminated when arthritic score of 4 was observed in arthritic control group. NA-2 (5 mg/kg) treatment significantly ameliorated the disease severity. Reduction in body weight and increase in paw oedema were significantly reversed in arthritic animal receiving NA-2. The nociceptive sensation was also inhibited in the NA-2 treated arthritic rats. Remission was associated with improved histology and significant decreased expression of serum proinflammatory cytokines ( for IL-1β and TNF-α). Based on our observations, it can be suggested that NA-2 possesses promising anti-arthritic property, and it can be used as a therapeutic agent for arthritis.