About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 637850, 5 pages
http://dx.doi.org/10.1155/2013/637850
Research Article

Comparison between the Repression Potency of siRNA Targeting the Coding Region and the 3′-Untranslated Region of mRNA

1Institute of Biotechnology in Medicine, Department of Biotechnology and Laboratory Science in Medicine, Yang-Ming University, Taipei 11221, Taiwan
2Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan

Received 15 April 2013; Revised 29 May 2013; Accepted 29 May 2013

Academic Editor: Kuo-Chen Chou

Copyright © 2013 Ching-Fang Lai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. de Fougerolles, H. P. Vornlocher, J. Maraganore, and J. Lieberman, “Interfering with disease: a progress report on siRNA-based therapeutics,” Nature Reviews Drug Discovery, vol. 6, no. 6, pp. 443–453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Krol, I. Loedige, and W. Filipowicz, “The widespread regulation of microRNA biogenesis, function and decay,” Nature Reviews Genetics, vol. 11, no. 9, pp. 597–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Sakurai, M. Amarzguioui, D. H. Kim et al., “A role for human Dicer in pre-RISC loading of siRNAs,” Nucleic Acids Research, vol. 39, no. 4, pp. 1510–1525, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Matranga, Y. Tomari, C. Shin, D. P. Bartel, and P. D. Zamore, “Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes,” Cell, vol. 123, no. 4, pp. 607–620, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. N. J. Caplen, J. Fleenor, A. Fire, and R. A. Morgan, “dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference,” Gene, vol. 252, no. 1-2, pp. 95–105, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. M. R. Lares, J. J. Rossi, and D. L. Ouellet, “RNAi and small interfering RNAs in human disease therapeutic applications,” Trends in Biotechnology, vol. 28, no. 11, pp. 570–579, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H. C. Lee, C. Y. Chen, and L. C. Au, “Systemic comparison of repression activity for miRNA and siRNA associated with different types of target sequences,” Biochemical and Biophysical Research Communications, vol. 411, no. 2, pp. 393–396, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl, “Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells,” Nature, vol. 411, no. 6836, pp. 494–498, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Kurreck, “siRNA efficiency: structure or sequence—that is the question,” Journal of Biomedicine and Biotechnology, vol. 2006, Article ID 83757, 7 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Patel, N. C. T'Wallant, M. H. Herbert, D. White, J. G. Murison, and G. Reid, “The potency of siRNA-mediated growth inhibition following silencing of essential genes is dependent on siRNA design and varies with target sequence,” Oligonucleotides, vol. 19, no. 4, pp. 317–328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Yigit, J. M. Bischof, Z. Zhang, et al., “Nucleosome mapping across the CFTR locus identifies novel regulatory factors,” Nucleic Acids Research, vol. 41, no. 5, pp. 2857–2868, 2013. View at Publisher · View at Google Scholar
  12. B. Q. Li, L. L. Hu, S. Niu, Y. D. Cai, and K. C. Chou, “Predict and analyze S-nitrosylation modification sites with the mRMR and IFS approaches,” Journal of Proteomics, vol. 75, no. 5, pp. 1654–1665, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Chen, P. M. Feng, H. Lin, and K. C. Chou, “iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition,” Nucleic Acids Research, vol. 41, no. 6, p. e68, 2013. View at Publisher · View at Google Scholar
  14. X. Xiao, P. Wang, W. Z. Lin, J. H. Jia, and K. C. Chou, “iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types,” Analytical Biochemistry, vol. 436, no. 2, pp. 168–177, 2013. View at Publisher · View at Google Scholar
  15. Y. Jiang, T. Huang, L. Chen, Y. F. Gao, Y. Cai, and K. C. Chou, “Signal propagation in protein interaction network during colorectal cancer progression,” BioMed Research International, vol. 2013, Article ID 287019, 9 pages, 2013. View at Publisher · View at Google Scholar
  16. Y. D. Cai, X. J. Liu, E. B. Xu, and K. C. Chou, “Support vector machines for predicting HIV protease cleavage sites in protein,” Journal of Computational Chemistry, vol. 23, no. 2, pp. 267–274, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. P. C. Huang, C. Y. Chen, F. Y. Yang, and L. C. Au, “A multisampling reporter system for monitoring microRNA activity in the same population of cells,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 104716, 5 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Zuker and P. Stiegler, “Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information,” Nucleic Acids Research, vol. 9, no. 1, pp. 133–148, 1981. View at Publisher · View at Google Scholar · View at Scopus
  19. D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner, “Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure,” Journal of Molecular Biology, vol. 288, no. 5, pp. 911–940, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. J. S. McCaskill, “The equilibrium partition function and base pair binding probabilities for RNA secondary structure,” Biopolymers, vol. 29, no. 6-7, pp. 1105–1119, 1990. View at Scopus
  21. G. Meister, “miRNAs get an early start on translational silencing,” Cell, vol. 131, no. 1, pp. 25–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. S. Kai and A. E. Pasquinelli, “MicroRNA assassins: factors that regulate the disappearance of miRNAs,” Nature Structural & Molecular Biology, vol. 17, no. 1, pp. 5–10, 2010. View at Scopus
  23. K. C. Chou and H. B. Shen, “Recent advances in developing web-serves for predicting protein attributes,” Natural Science, vol. 1, no. 2, pp. 63–92, 2009. View at Publisher · View at Google Scholar