About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 651945, 11 pages
http://dx.doi.org/10.1155/2013/651945
Research Article

Modification of Decellularized Goat-Lung Scaffold with Chitosan/Nanohydroxyapatite Composite for Bone Tissue Engineering Applications

1Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, UP 247001, India
2Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
3Department of Molecular Medicine & Biology, Jaslok Hospital and Research Center, Mumbai, Maharashtra 400026, India

Received 2 April 2013; Accepted 26 May 2013

Academic Editor: Ulrich Kneser

Copyright © 2013 Sweta K. Gupta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Kroeze, M. N. Helder, L. E. Govaert, and T. H. Smit, “Biodegradable polymers in bone tissue engineering,” Materials, vol. 2, no. 3, pp. 833–856, 2009. View at Publisher · View at Google Scholar
  2. S. Oh, N. Oh, M. Appleford, and J. L. Ong, “Bioceramics for tissue engineering applications—a review,” American Journal of Biochemistry and Biotechnology, vol. 2, no. 2, pp. 49–56, 2006. View at Publisher · View at Google Scholar
  3. S. Gupta, C. Sharma, A. K. Dinda, A. K. Ray, and N. C. Mishra, “Tooth tissue engineering: potential and piffalls,” Journal of Biomimetics, Biomaterials, and Tissue Engineering, vol. 12, no. 1, pp. 59–81, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Yoon and T. G. Park, “Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts,” Journal of Biomedical Materials Research, vol. 55, no. 3, pp. 401–408, 2001.
  5. C. Sharma, A. K. Dinda, and N. C. Mishra, “Fabrication and characterization of natural origin chitosan-gelatin-alginate composite scaffold by foaming method without using surfactant,” Journal of Applied Polymer Science, vol. 127, no. 4, pp. 3228–3241, 2012.
  6. C. Schugens, V. Maquet, C. Grandfils, R. Jerome, and P. Teyssie, “Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation,” Journal of Biomedical Materials Research, vol. 30, no. 4, pp. 449–461, 1996.
  7. T. B. F. Woodfield, J. Malda, J. De Wijn, F. Péters, J. Riesle, and C. A. Van Blitterswijk, “Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique,” Biomaterials, vol. 25, no. 18, pp. 4149–4161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Ma, M. Kotaki, T. Yong, W. He, and S. Ramakrishna, “Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering,” Biomaterials, vol. 26, no. 15, pp. 2527–2536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Gautam, A. K. Dinda, and N. C. Mishra, “Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method,” Materials Science and Engineering C, vol. 33, no. 3, pp. 1228–1235, 2013.
  10. T. W. Gilbert, T. L. Sellaro, and S. F. Badylak, “Decellularization of tissues and organs,” Biomaterials, vol. 27, no. 19, pp. 3675–3683, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. T. W. Gilbert, D. B. Stolz, F. Biancaniello, A. Simmons-Byrd, and S. F. Badylak, “Production and characterization of ECM powder: implications for tissue engineering applications,” Biomaterials, vol. 26, no. 12, pp. 1431–1435, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Cozad, S. L. Bachman, and S. A. Grant, “Assessment of decellularized porcine diaphragm conjugated with gold nanomaterials as a tissue scaffold for wound healing,” Journal of Biomedical Materials Research A, vol. 99, no. 3, pp. 426–434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Rieder, M.-T. Kasimir, G. Silberhumer et al., “Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells,” Journal of Thoracic and Cardiovascular Surgery, vol. 127, no. 2, pp. 399–405, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Mendoza-Novelo, E. E. Avila, J. V. Cauich-RodriguezS et al., “Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content,” Acta Biomaterialia, vol. 7, no. 3, pp. 1241–1248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. C. E. Schmidt and J. M. Baier, “Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering,” Biomaterials, vol. 21, no. 22, pp. 2215–2231, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. T. W. Hudson, S. Y. Liu, and C. E. Schmidt, “Engineering an improved acellular nerve graft via optimized chemical processing,” Tissue Engineering, vol. 10, no. 9-10, pp. 1346–1358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. G. H. Borschel, R. G. Dennis, and W. M. Kuzon Jr., “Contractile skeletal muscle tissue-engineered on an acellular scaffold,” Plastic and Reconstructive Surgery, vol. 113, no. 2, pp. 595–602, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. S. Cartmell and M. G. Dunn, “Effect of chemical treatments on tendon cellularity and mechanical properties,” Journal of Biomedical Materials Research, vol. 49, no. 1, pp. 134–140, 2000.
  19. T. Woods and P. F. Gratzer, “Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft,” Biomaterials, vol. 26, no. 35, pp. 7339–7349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Lin, W. C. W. Chan, S. F. Badylak, and S. N. Bhatia, “Assessing porcine liver-derived biomatrix for hepatic tissue engineering,” Tissue Engineering, vol. 10, no. 7-8, pp. 1046–1053, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. R.-N. Chen, H.-O. Ho, Y.-T. Tsai, and M.-T. Sheu, “Process development of an acellular dermal matrix (ADM) for biomedical applications,” Biomaterials, vol. 25, no. 13, pp. 2679–2686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Yoshida, T. Miyazaki, E. Ishida, and M. Ashizuka, “Preparation of bioactive chitosan-hydroxyapatite nanocomposites for bone repair through mechanochemical reaction,” Materials Transactions, vol. 45, no. 4, pp. 994–998, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Verma, K. S. Katti, and D. R. Katti, “Osteoblast adhesion, proliferation and growth on polyelectrolyte complex-hydroxyapatite nanocomposites,” Philosophical Transactions of the Royal Society A, vol. 368, no. 1917, pp. 2083–2097, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Li, L. Yubao, Y. Aiping, P. Xuelin, W. Xuejiang, and Z. Xiang, “Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials,” Journal of Materials Science: Materials in Medicine, vol. 16, no. 3, pp. 213–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Mendoza-Novelo and J. V. Cauich-Rodriguez, “Decellularization, stabilization and functionalization of collagenous tissues used as cardiovascular biomaterials,” in Biomaterials: Physics and Chemistry, R. Pignatello, Ed., pp. 159–182, InTech, 2011.
  26. F. Lumachi, V. Camozzi, V. Tombolan, and G. Luisetto, “Bone mineral density, osteocalcin, and bone-specific alkaline phosphatase in patients with insulin-dependent diabetes mellitus,” Annals of the New York Academy of Sciences, vol. 1173, no. 1, pp. E64–E67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Fulzele, R. C. Riddle, D. J. DiGirolamo et al., “Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition,” Cell, vol. 142, no. 2, pp. 309–319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Pi, Y. Wu, and L. D. Quarles, “GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo,” Journal of Bone and Mineral Research, vol. 26, no. 7, pp. 1680–1683, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. W. W. Thein-Han and R. D. K. Misra, “Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering,” Acta Biomaterialia, vol. 5, no. 4, pp. 1182–1197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Hafemann, K. Ghofrani, H.-G. Gattner, H. Stieve, and N. Pallua, “Cross-linking by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) of a collagen/elastin membrane meant to be used as a dermal substitute: effects on physical, biochemical and biological features in vitro,” Journal of Materials Science: Materials in Medicine, vol. 12, no. 5, pp. 437–446, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Zeeman, P. J. Dijkstra, P. B. Van Wachem et al., “Successive epoxy and carbodiimide cross-linking of dermal sheep collagen,” Biomaterials, vol. 20, no. 10, pp. 921–931, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. L. H. H. Olde Damink, P. J. Dijkstra, M. J. A. Van Luyn, P. B. Van Wachem, P. Nieuwenhuis, and J. Feijen, “Cross-linking of dermal sheep collagen using a water-soluble carbodiimide,” Biomaterials, vol. 17, no. 8, pp. 765–773, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Sodek, Q. Zhang, H. A. Goldberg, et al., Non-Collagenous Bone Proteins and Their Role in Substrate-Induced Bioactivity, University of Toronto Press, Toronto, Canada, 1991.
  34. G. Blackburn, T. G. Scott, I. S. Bayer, A. Ghosh, A. S. Birisf, and A. Biswas, “Bionanomaterials for bone tumor engineering and tumor destruction,” Jounal of Material Chemistry B, vol. 1, no. 11, pp. 1519–1534, 2013. View at Publisher · View at Google Scholar
  35. C. V. M. Rodrigues, P. Serricella, A. B. R. Linhares et al., “Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering,” Biomaterials, vol. 24, no. 27, pp. 4987–4997, 2003. View at Publisher · View at Google Scholar · View at Scopus