About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 652604, 8 pages
http://dx.doi.org/10.1155/2013/652604
Research Article

Ultraviolet-Visible and Fluorescence Spectroscopy Techniques Are Important Diagnostic Tools during the Progression of Atherosclerosis: Diet Zinc Supplementation Retarded or Delayed Atherosclerosis

1Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
2Department of Physics, College of Science, Al-Imam Muhammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh 11623, Saudi Arabia
3Biochemistry Department, Biophysics group, National Research Centre, Dokki, Giza, Egypt

Received 23 June 2013; Revised 27 August 2013; Accepted 28 August 2013

Academic Editor: Kota V. Ramana

Copyright © 2013 Mohamed Anwar K. Abdelhalim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. K. Glass and J. L. Witztum, “Atherosclerosis: the road ahead,” Cell, vol. 104, no. 4, pp. 503–516, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Ross, “Atherosclerosis—an inflammatory disease,” The New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. R. S. Cotran, V. Kumar, and T. Collins, Patologia Estrutural E Funcional, Guanabara Koogan, Rio de Janeiro, Brazil, 2000.
  4. M. A. K. Abdelhalim and M. Mady, “Liver uptake of gold nanoparticles after intraperitoneal administration in vivo: a fluorescence study,” Lipids in Health and Disease, vol. 10, article 195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Abdelhalim and B. M. Jarrar, “Gold nanoparticles administration induced prominent inflammatory, central vein intima disruption, fatty change and Kupffer cells hyperplasia,” Lipids in Health and Disease, vol. 10, article 133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. K. Abdelhalim and B. M. Jarrar, “The appearance of renal cells cytoplasmic degeneration and nuclear destruction might be an indication of GNPs toxicity,” Lipids in Health and Disease, vol. 10, article 147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. K. Abdelhalim, “The bioaccumulation and toxicity induced by gold nanoparticles in rats in vivo can be detected by ultraviolet-visible (UV-visible) spectroscopy,” African Journal of Biotechnology, vol. 11, no. 39, pp. 9399–9406, 2012.
  8. E. Braunwald, Tratado de Medicina Cardiovascular, Editora Roca LTDA, São Paulo, Brazil, 1999.
  9. R. S. Cotran, V. Kumar, and C. T. Robbins, Patología Estrutural e Funcional, Guanabara Koogan, Rio de Janeiro, Brazil, 2000.
  10. H. C. Stary, “Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults,” Atherosclerosis Supplements, vol. 9, no. 1, pp. I19–I32, 1989. View at Scopus
  11. M. Keijzer, R. Richards-Kortum, S. L. Jacques, and M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of human aorta,” Applied Optics, vol. 28, no. 20, pp. 4286–4292, 1989.
  12. C. Kittrell, R. L. Willett, and C. De Los Santos-Pacheo, “Diagnosis of fibrous arterial atherosclerosis using fluorescence,” Applied Optics, vol. 24, no. 15, pp. 2280–2281, 1985. View at Scopus
  13. A. Warnholtz, H. Mollnau, M. Oelze, M. Wendt, and T. Münzel, “Antioxidants and endothelial dysfunction in hyperlipidemia,” Current Hypertension Reports, vol. 3, no. 1, pp. 53–60, 2001. View at Scopus
  14. A. J. Lusis, “Atherosclerosis,” Nature, vol. 407, no. 6801, pp. 233–241, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Kohen and A. Nyska, “Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification,” Toxicologic Pathology, vol. 30, no. 6, pp. 620–650, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. K. Abdelhalim and S. A. Moussa, “Biochemical changes of hemoglobin and osmotic fragility of red blood cells in high fat diet rabbits,” Pakistan Journal of Biological Sciences, vol. 13, no. 2, pp. 73–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Weinmann, M. Jouan, N. Quy Dao et al., “Quantitative analysis of cholesterol and cholesteryl esters in human atherosclerotic plaques using near-infrared Raman spectroscopy,” Atherosclerosis, vol. 140, no. 1, pp. 81–88, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. T. J. Römer, J. F. Brennan III, M. Fitzmaurice et al., “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation, vol. 97, no. 9, pp. 878–885, 1998. View at Scopus
  19. G. Deinum, D. Rodriguez, T. J. Römer, M. Fitzmaurice, J. R. Kramer, and M. S. Feld, “Histological classification of Raman spectra of human coronary artery atherosclerosis using principal component analysis,” Applied Spectroscopy, vol. 53, no. 8, pp. 938–942, 1999. View at Scopus
  20. A. E. Pearse, Histochemistry. Theoritical and Applied. Analytical Technology, vol. 2, Churchill-Livingstone, Edinburgh, UK, 4th edition, 1985.
  21. J. V. Dacie and S. M. Lewis, Practical Haematology, Churchill Livingstone, Edinburgh, UK, 7th edition, 1991.
  22. L. Silveira Jr., S. Sathaiah, R. A. Zngaro, M. T. T. Pacheco, M. C. Chavantes, and C. A. G. Pasqualucci, “Correlation between near-infrared Raman spectroscopy and the histopathological analysis of atherosclerosis in human coronary arteries,” Lasers in Surgery and Medicine, vol. 30, no. 4, pp. 290–297, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Jetsrisuparb, K. Sanchaisuriya, G. Fucharoen et al., “Development of severe anemia during fever episodes in patients with hemoglobin E trait and hemoglobin H disease combinations,” Journal of Pediatric Hematology/Oncology, vol. 28, no. 4, pp. 249–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Esterbauer, J. Gebicki, H. Puhl, and G. Jurgens, “The role of lipid peroxidation and antioxidants in oxidative modification of LDL,” Free Radical Biology and Medicine, vol. 13, no. 4, pp. 341–390, 1992. View at Publisher · View at Google Scholar · View at Scopus