About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 654120, 10 pages
http://dx.doi.org/10.1155/2013/654120
Review Article

Biotechnological Approaches to Study Plant Responses to Stress

Department of Agricultural Sciences, Universitat Jaume I, Campus Riu Sec, 12071 Castelló de la Plana, Spain

Received 31 July 2012; Accepted 30 October 2012

Academic Editor: Sarvajeet S. Gill

Copyright © 2013 Rosa M. Pérez-Clemente et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Fraire-Velázquez, R. Rodríguez-Guerra, and L. Sánchez-Calderón, “Abiotic and biotic stress response crosstalk in plants,” in Abiotic Stress Response in Plants—Physiological, Biochemical and Genetic Perspectives, A. Shanker, Ed., pp. 3–26, InTech, Rijeka, Croatia, 2011.
  2. T. Hirayama and K. Shinozaki, “Research on plant abiotic stress responses in the post-genome era: past, present and future,” Plant Journal, vol. 61, no. 6, pp. 1041–1052, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Jaspers and J. Kangasjärvi, “Reactive oxygen species in abiotic stress signaling,” Physiologia Plantarum, vol. 138, no. 4, pp. 405–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Pérez-Alfocea, M. E. Ghanem, A. Gómez-Cadenas, and I. Dodd, “Omics of root-to-shoot signaling under salt stress and water deficit,” OMICs A Journal of Integrative Biology, vol. 15, no. 12, pp. 893–901, 2011.
  5. C. Feuillet, J. E. Leach, J. Rogers, P. S. Schnable, and K. Eversole, “Crop genome sequencing: lessons and rationales,” Trends in Plant Science, vol. 16, no. 2, pp. 77–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. P. S. G. Chain, D. V. Grafham, R. S. Fulton et al., “Genome project standards in a new era of sequencing,” Science, vol. 326, no. 5950, pp. 236–237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. C. Marques, H. Alonso-Cantabrana, J. Forment et al., “A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus,” BMC Genomics, vol. 10, article 428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Lukowitz, C. S. Gillmor, and W. R. Scheible, “Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you,” Plant Physiology, vol. 123, no. 3, pp. 795–805, 2000. View at Scopus
  9. F. Chen, Q. Li, L. Sun, and Z. He, “The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress,” DNA Research, vol. 13, no. 2, pp. 53–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Pitzschke, A. Schikora, and H. Hirt, “MAPK cascade signalling networks in plant defence,” Current Opinion in Plant Biology, vol. 12, no. 4, pp. 421–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Nakagami, H. Soukupová, A. Schikora, V. Žárský, and H. Hirt, “A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis,” Journal of Biological Chemistry, vol. 281, no. 50, pp. 38697–38704, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. C. Suarez-Rodriguez, L. Adams-Phillips, Y. Liu et al., “MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants,” Plant Physiology, vol. 143, no. 2, pp. 661–669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. Qiu, L. Zhou, B. W. Yun et al., “Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1,” Plant Physiology, vol. 148, no. 1, pp. 212–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. D. Peleman and J. R. van der Voort, “Breeding by design,” Trends in Plant Science, vol. 8, no. 7, pp. 330–334, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. B. Bogeat-Triboulot, M. Brosché, J. Renaut et al., “Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions,” Plant Physiology, vol. 143, no. 2, pp. 876–892, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Kosová, P. Vítámvás, I. T. Prášil, and J. Renaut, “Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response,” Journal of Proteomics, vol. 74, no. 8, pp. 1301–1322, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Oñate-Sánchez and K. B. Singh, “Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection,” Plant Physiology, vol. 128, no. 4, pp. 1313–1322, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Y. Fujimoto, M. Ohta, A. Usui, H. Shinshi, and M. Ohme-Takagi, “Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression,” Plant Cell, vol. 12, no. 3, pp. 393–404, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Nakano, K. Suzuki, T. Fujimura, and H. Shinshi, “Genome-wide analysis of the ERF gene family in Arabidopsis and rice,” Plant Physiology, vol. 140, no. 2, pp. 411–432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Wu, X. Chen, H. Ren et al., “ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco,” Planta, vol. 226, no. 4, pp. 815–825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Mizoi, K. Shinozaki, and K. Yamaguchi-Shinozaki, “AP2/ERF family transcription factors in plant abiotic stress responses,” Biochimica et Biophysica Acta, vol. 1819, no. 2, pp. 86–96, 2012.
  22. K. Nakashima, H. Takasaki, J. Mizoi, K. Shinozaki, and K. Yamaguchi-Shinozaki, “NAC transcription factors in plant biotic and abiotic stress responses,” Biochimica et Biophysica Acta, vol. 1819, no. 2, pp. 97–103, 2011.
  23. T. M. de Oliveira, L. C. Cidade, A. S. Gesteira, M. A. Coelho Filho, W. S. Soares Filho, and M. G. C. Costa, “Analysis of the NAC transcription factor gene family in citrus reveals a novel member involved in multiple abiotic stress responses,” Tree Genetics and Genomes, vol. 7, no. 6, pp. 1123–1134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Abe, Y. Kobayashi, S. Yamamoto et al., “FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex,” Science, vol. 309, no. 5737, pp. 1052–1056, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. G. Corrêa, D. M. Riaño-Pachón, C. G. Schrago, R. V. dos Santos, B. Mueller-Roeber, and M. Vincentz, “The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes,” PLoS ONE, vol. 3, no. 8, article e2944, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Weltmeier, A. Ehlert, C. S. Mayer et al., “Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors,” EMBO Journal, vol. 25, no. 13, pp. 3133–3143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Kaminaka, C. Näke, P. Epple et al., “bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection,” EMBO Journal, vol. 25, no. 18, pp. 4400–4411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Baena-González, F. Rolland, J. M. Thevelein, and J. Sheen, “A central integrator of transcription networks in plant stress and energy signalling,” Nature, vol. 448, no. 7156, pp. 938–942, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. X. Liu, R. Srivastava, P. Che, and S. H. Howell, “Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling,” Plant Journal, vol. 51, no. 5, pp. 897–909, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Nieva, P. K. Busk, E. Domínguez-Puigjaner et al., “Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28,” Plant Molecular Biology, vol. 58, no. 6, pp. 899–914, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Al-Sady, W. Ni, S. Kircher, E. Schäfer, and P. H. Quail, “Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation,” Molecular Cell, vol. 23, no. 3, pp. 439–446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Satoh, Y. Fujita, K. Nakashima, K. Shinozaki, and K. Yamaguchi-Shinozaki, “A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis,” Plant and Cell Physiology, vol. 45, no. 3, pp. 309–317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Alonso, L. Oñate-Sánehez, F. Weltmeier et al., “A Pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation,” Plant Cell, vol. 21, no. 6, pp. 1747–1761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Fode, T. Siemsen, C. Thurow, R. Weigel, and C. Gatz, “The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters,” Plant Cell, vol. 20, no. 11, pp. 3122–3135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Le Henanff, T. Heitz, P. Mestre, J. Mutterer, B. Walter, and J. Chong, “Characterization of Vitis vinifera NPR1 homologs involved in the regulation of pathogenesis-related gene expression,” BMC Plant Biology, vol. 9, article 54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. P. J. Rushton, I. E. Somssich, P. Ringler, and Q. J. Shen, “WRKY transcription factors,” Trends in Plant Science, vol. 15, no. 5, pp. 247–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Qiu, J. Xiao, W. Xie, H. Cheng, X. Li, and S. Wang, “Exploring transcriptional signalling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice,” BMC Plant Biology, vol. 9, article 74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Wan, X. C. Zhang, and G. Stacey, “Chitin signaling and plant disease resistance,” Plant Signaling and Behavior, vol. 3, no. 10, pp. 831–833, 2008. View at Scopus
  39. S. G. Kang, E. Park, and K. S. Do, “Identification of a pathogen-Induced glycine max transcription factor GmWRKY1,” Plant Pathology Journal, vol. 25, no. 4, pp. 381–388, 2009.
  40. A. Mandaokar and J. Browse, “MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis,” Plant Physiology, vol. 149, no. 2, pp. 851–862, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Lepiniec, I. Debeaujon, J. M. Routaboul et al., “Genetics and biochemistry of seed flavonoids,” Annual Review of Plant Biology, vol. 57, pp. 405–430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Dubos, R. Stracke, E. Grotewold, B. Weisshaar, C. Martin, and L. Lepiniec, “MYB transcription factors in Arabidopsis,” Trends in Plant Science, vol. 15, no. 10, pp. 573–581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Raffaele, F. Vailleau, A. Léger et al., “A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis,” Plant Cell, vol. 20, no. 3, pp. 752–767, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. P. J. Seo and C. M. Park, “MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis,” New Phytologist, vol. 186, no. 2, pp. 471–483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Agarwal, Y. Hao, A. Kapoor et al., “A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance,” Journal of Biological Chemistry, vol. 281, no. 49, pp. 37636–37645, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Zhang, G. Zhao, J. Jia, and X. Liu, “Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress,” Journal of Experimental Botany, vol. 63, no. 1, pp. 203–214, 2011.
  47. P. K. Agarwal and B. Jha, “Transcription factors in plants and ABA dependent and independent abiotic stress signalling,” Biologia Plantarum, vol. 54, no. 2, pp. 201–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. Widodo, J. H. Patterson, E. Newbigin, M. Tester, A. Bacic, and U. Roessner, “Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance,” Journal of Experimental Botany, vol. 60, no. 14, pp. 4089–4103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. D. Djoukeng, V. Arbona, R. Argamasilla, and A. Gomez-Cadenas, “Flavonoid profiling in leaves of citrus genotypes under different environmental situations,” Journal of Agricultural and Food Chemistry, vol. 56, no. 23, pp. 11087–11097, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. C. D. Broeckling, D. V. Huhman, M. A. Farag et al., “Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism,” Journal of Experimental Botany, vol. 56, no. 410, pp. 323–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Fukushima, M. Kusano, H. Redestig, M. Arita, and K. Saito, “Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach,” BMC Systems Biology, vol. 5, article no. 1, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Chatterjee, S. Srivastava, A. Khalid et al., “Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts,” Phytochemistry, vol. 71, no. 10, pp. 1085–1094, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Seger and S. Sturm, “Analytical aspects of plant metabolite profiling platforms: current standings and future aims,” Journal of Proteome Research, vol. 6, no. 2, pp. 480–497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. V. Arbona, R. Argamasilla, and A. Gómez-Cadenas, “Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress,” Journal of Plant Physiology, vol. 167, no. 16, pp. 1342–1350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. A. D. Hegeman, “Plant metabolomics-meeting the analytical challenges of comprehensive metabolite analysis,” Briefings in Functional Genomics and Proteomics, vol. 9, no. 2, pp. 139–148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Shulaev, “Metabolomics technology and bioinformatics,” Briefings in Bioinformatics, vol. 7, no. 2, pp. 128–139, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. M. C. Jewell, B. C. Campbell, and I. D. Godwin, “Transgenic plants for abiotic stress resistance,” in Transgenic Crop Plants, C. Kole, et al., Ed., Springer, Heidelberg, Germany, 2010. View at Publisher · View at Google Scholar
  58. V. Arbona and A. Gómez-Cadenas, “Hormonal modulation of citrus responses to flooding,” Journal of Plant Growth Regulation, vol. 27, no. 3, pp. 241–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. X. Ji, B. Dong, B. Shiran et al., “Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals,” Plant Physiology, vol. 156, no. 2, pp. 550–563, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Xiong and S. Z. Fei, “Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.),” Planta, vol. 224, no. 4, pp. 878–888, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Y. Zhang, Y. Li, T. Gao et al., “Arabidopsis SDIR1 enhances drought tolerance in crop plants,” Bioscience, Biotechnology and Biochemistry, vol. 72, no. 8, pp. 2251–2254, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Ashraf and M. R. Foolad, “Roles of glycine betaine and proline in improving plant abiotic stress resistance,” Environmental and Experimental Botany, vol. 59, no. 2, pp. 206–216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Hmida-Sayari, R. Gargouri-Bouzid, A. Bidani, L. Jaoua, A. Savouré, and S. Jaoua, “Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants,” Plant Science, vol. 169, no. 4, pp. 746–752, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Umezawa, M. Fujita, Y. Fujita, K. Yamaguchi-Shinozaki, and K. Shinozaki, “Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future,” Current Opinion in Biotechnology, vol. 17, no. 2, pp. 113–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. J. H. Liu and T. Moriguchi, “Changes in free polyamines and gene expression during peach flower development,” Biologia Plantarum, vol. 51, no. 3, pp. 530–532, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Wang, P. P. Sun, C. L. Chen, Y. Wang, X. Z. Fu, and J. H. Liu, “An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis,” Journal of Experimental Botany, vol. 62, no. 8, pp. 2899–2914, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. J. H. Liu, I. Nakajima, and T. Moriguchi, “Effects of salt and osmotic stresses on free polyamine content and expression of polyamine biosynthetic genes in Vitis vinifera,” Biologia Plantarum, vol. 55, no. 2, pp. 340–344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. Z. Hossain, M. F. López-Climent, V. Arbona, R. M. Pérez-Clemente, and A. Gómez-Cadenas, “Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage,” Journal of Plant Physiology, vol. 166, no. 13, pp. 1391–1404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Amudha and G. Balasubramani, “Recent molecular advances to combat abiotic stress tolerance in crop plants,” Biotechnology and Molecular Biology Review, vol. 6, no. 2, pp. 31–58, 2011.
  70. L. Tang, S. Y. Kwon, S. H. Kim et al., “Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature,” Plant Cell Reports, vol. 25, no. 12, pp. 1380–1386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. J. S. Rohila, R. K. Jain, and R. Wu, “Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA,” Plant Science, vol. 163, no. 3, pp. 525–532, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Y. Wu, Q. J. Chen, M. Chen, J. Chen, and X. C. Wang, “Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene,” Plant Science, vol. 169, no. 1, pp. 65–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Sui, M. Li, S. J. Zhao, F. Li, H. Liang, and Q. W. Meng, “Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato,” Planta, vol. 226, no. 5, pp. 1097–1108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Miller and R. Mittler, “Could heat shock transcription factors function as hydrogen peroxide sensors in plants?” Annals of Botany, vol. 98, no. 2, pp. 279–288, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Bhatnagar-Mathur, V. Vadez, and K. K. Sharma, “Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects,” Plant Cell Reports, vol. 27, no. 3, pp. 411–424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Li, O. P. Dhankher, L. Carreira et al., “Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity,” Plant and Cell Physiology, vol. 45, no. 12, pp. 1787–1797, 2004. View at Scopus
  77. R. Chaffai and H. Koyama, “Heavy metal tolerance in Arabidopsis thaliana,” Advances in Botanical Research, vol. 6, pp. 1–49, 2011.
  78. R. Munns, “Genes and salt tolerance: bringing them together,” New Phytologist, vol. 167, no. 3, pp. 645–663, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Yamaguchi-Shinozaki and K. Shinozaki, “Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses,” Annual Review of Plant Biology, vol. 57, pp. 781–803, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Tzfira and V. Citovsky, “Agrobacterium-mediated genetic transformation of plants: biology and biotechnology,” Current Opinion in Biotechnology, vol. 17, no. 2, pp. 147–154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. R. M. Pérez-Clemente and A. Gómez-Cadenas, “In vitro tissue culture, a tool for the study and breeding of plants subjected to abiòtic stress conditions,” Recent Advances in Plant In Vitro Culture, pp. 91–108, 2012.
  82. L. E. Trujillo, M. Sotolongo, C. Menéndez et al., “SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants,” Plant and Cell Physiology, vol. 49, no. 4, pp. 512–525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Fu, B. Huang, Y. Xiao, S. Muthukrishnan, and G. H. Liang, “Overexpression of barley hva1 gene in creeping bentgrass for improving drought tolerance,” Plant Cell Reports, vol. 26, no. 4, pp. 467–477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. Q. C. Yan, M. S. Kuo, S. Li et al., “AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase,” Journal of Biological Chemistry, vol. 283, no. 15, pp. 10048–10057, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Catinot, A. Buchala, E. Abou-Mansour, and J. P. Métraux, “Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana,” FEBS Letters, vol. 582, no. 4, pp. 473–478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. X. Y. Yang, W. J. Jiang, and H. J. Yu, “The expression profiling of the lipoxygenase (LOX) family genes guring fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.),” International Journal of Molecular Sciences, vol. 13, pp. 2481–2500, 2012.
  87. A. Andreou and I. Feussner, “Lipoxygenases—structure and reaction mechanism,” Phytochemistry, vol. 70, no. 13-14, pp. 1504–1510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. J. A. Christianson, E. S. Dennis, D. J. Llewellyn, and I. W. Wilson, “ATAF NAC transcription factors: regulators of plant stress signaling,” Plant Signaling and Behavior, vol. 5, no. 4, pp. 428–432, 2010. View at Scopus
  89. M. Mazid, T. A. Khan, and F. Mohammad, “Role of secondary metabolites in defense mechanisms of plants,” Biology and Medicine, vol. 3, no. 2, pp. 232–249, 2011.
  90. A. Edreva, V. Velikova, T. Tsonev et al., “Stress-protective role of secondary metabolites: diversity of functions and mechanisms,” Genetics and Plant Physiology, vol. 34, no. 1, pp. 67–78, 2008.