About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 656158, 9 pages
http://dx.doi.org/10.1155/2013/656158
Research Article

Artificial Box C/D RNAs Affect Pre-mRNA Maturation in Human Cells

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia

Received 31 October 2012; Revised 27 January 2013; Accepted 9 February 2013

Academic Editor: Yasushi Okazaki

Copyright © 2013 Grigoriy A. Stepanov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Box C/D small nucleolar RNAs (snoRNAs) are known to guide the -O-ribose methylation of nucleotides in eukaryotic ribosomal RNAs and small nuclear RNAs. Recently snoRNAs are predicted to regulate posttranscriptional modifications of pre-mRNA. To expand understanding of the role of snoRNAs in control of gene expression, in this study we tested the ability of artificial box C/D RNAs to affect the maturation of target pre-mRNA. We found that transfection of artificial box C/D snoRNA analogues directed to HSPA8 pre-mRNAs into human cells induced suppression of the target mRNA expression in a time- and dose-dependent manner. The artificial box C/D RNA directed to the branch point adenosine of the second intron, as well as the analogue directed to the last nucleotide of the second exon of the HSPA8 pre-mRNA caused the most prominent influence on the level of HSPA8 mRNAs. Neither box D nor the ability to direct -O-methylation of nucleotides in target RNA was essential for the knockdown activity of artificial snoRNAs. Inasmuch as artificial box C/D RNAs decreased viability of transfected human cells, we propose that natural snoRNAs as well as their artificial analogues can influence the maturation of complementary pre-mRNA and can be effective regulators of vital cellular processes.