About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 656158, 9 pages
http://dx.doi.org/10.1155/2013/656158
Research Article

Artificial Box C/D RNAs Affect Pre-mRNA Maturation in Human Cells

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia

Received 31 October 2012; Revised 27 January 2013; Accepted 9 February 2013

Academic Editor: Yasushi Okazaki

Copyright © 2013 Grigoriy A. Stepanov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Cavaille, M. Nicoloso, and J. P. Bachellerie, “Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides,” Nature, vol. 383, no. 6602, pp. 732–735, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. K. T. Tycowski, C. M. Smith, M. D. Shu, and J. A. Steitz, “A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 25, pp. 14480–14485, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Ganot, M. L. Bortolin, and T. Kiss, “Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs,” Cell, vol. 89, no. 5, pp. 799–809, 1997. View at Scopus
  4. Z. Kiss-László, Y. Henry, and T. Kiss, “Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA,” The EMBO Journal, vol. 17, no. 3, pp. 797–807, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. N. J. Watkins, V. Ségault, B. Charpentier et al., “A common core RNP structure shared between the small nucleoar box C/D RNPs and the spliceosomal U4 snRNP,” Cell, vol. 103, no. 3, pp. 457–466, 2000. View at Scopus
  6. D. R. Newman, J. F. Kuhn, G. M. Shanab, and E. S. Maxwell, “Box C/D snoRNA-associated proteins: two pairs of evolutionarily ancient proteins and possible links to replication and transcription,” RNA, vol. 6, no. 6, pp. 861–879, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. N. M. Cahill, K. Friend, W. Speckmann et al., “Site-specific cross-linking analyses reveal an asymmetric protein distribution for a box C/D snoRNP,” The EMBO Journal, vol. 21, no. 14, pp. 3816–3828, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Hüttenhofer, M. Kiefmann, S. Meier-Ewert et al., “RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse,” The EMBO Journal, vol. 20, no. 11, pp. 2943–2953, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. P. Bachellerie, J. Cavaille, and A. Huttenhofer, “The expanding snoRNA world,” Biochimie, vol. 84, no. 8, pp. 775–790, 2002. View at Publisher · View at Google Scholar
  10. P. S. Bazeley, V. Shepelev, Z. Talebizadeh et al., “snoTARGET shows that human orphan snoRNA targets locate close to alternative splice junctions,” Gene, vol. 408, no. 1-2, pp. 172–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Vitali, E. Basyuk, E. Le Meur et al., “ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs,” The Journal of Cell Biology, vol. 169, no. 5, pp. 745–753, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Kishore and S. Stamm, “The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C,” Science, vol. 311, no. 5758, pp. 230–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Ono, K. Yamada, F. Avolio et al., “Analysis of human small nucleolar RNAs (snoRNA) and the development of snoRNA modulator of gene expression vectors,” Molecular Biology of the Cell, vol. 21, no. 9, pp. 1569–1584, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Lindquist and E. A. Craig, “The heat shock proteins,” Annual Review of Genetics, vol. 22, pp. 631–677, 1988. View at Publisher · View at Google Scholar
  15. J. Nylandsted, M. Gyrd-Hansen, A. Danielewich, et al., “Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization,” Journal of Experimental Medicine, vol. 200, no. 4, pp. 425–435, 2004. View at Publisher · View at Google Scholar
  16. M. Rohde, M. Daugaard, M. H. Jensen, K. Helin, J. Nylandsted, and M. Jäättelä, “Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms,” Genes and Development, vol. 19, no. 5, pp. 570–582, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. N. F. Krynetskaia, M. S. Phadke, S. H. Jadhav, and E. Y. Krynetskiy, “Chromatin-associated proteins HMGB1/2 and PDIA3 trigger cellular response to chemotherapy-induced DNA damage,” Molecular Cancer Therapeutics, vol. 8, no. 4, pp. 864–872, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Q. Wei, X. Zhao, Y. Kariya, K. Teshigawara, and A. Uchida, “Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cells,” Cancer Immunology, Immunotherapy, vol. 40, no. 2, pp. 73–78, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Nylandsted, W. Wick, U. A. Hirt, et al., “Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion,” Cancer Research, vol. 62, no. 24, pp. 7139–7142, 2002. View at Scopus
  20. Z. G. Zhao and W. L. Shen, “Heat shock protein 70 antisense oligonucleotide inhibits cell growth and induces apoptosis in human gastric cancer cell line SGC-7901,” World Journal of Gastroenterology, vol. 11, no. 1, pp. 73–78, 2005. View at Scopus
  21. G. A. Stepanov, D. V. Semenov, E. V. Kuligina et al., “Analogues of artificial human box C/D small nucleolar RNA as regulators of alternative splicing of a pre-mRNA target,” Acta Naturae, vol. 4, no. 1, pp. 32–41, 2012.
  22. G. Kol, G. Lev-Maor, and G. Ast, “Human-mouse comparative analysis reveals that branch-site plasticity contributes to splicing regulation,” Human Molecular Genetics, vol. 14, no. 11, pp. 1559–1568, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Kiss-László, Y. Henry, J. P. Bachellerie, M. Caizergues-Ferrer, and T. Kiss, “Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs,” Cell, vol. 85, no. 7, pp. 1077–1088, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. L. H. Qu, Y. Henry, M. Nicoloso et al., “U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA,” Nucleic Acids Research, vol. 23, no. 14, pp. 2669–2676, 1995. View at Scopus
  25. D. M. Graifer, G. G. Karpova, and D. G. Knorre, “Location of template on the human ribosome as revealed from data on cross-linking with reactive mRNA analogs,” Biochemistry, vol. 66, no. 6, pp. 585–602, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Nagy and L. E. Maquat, “A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance,” Trends in Biochemical Sciences, vol. 23, no. 6, pp. 198–199, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Weischenfeldt, J. Waage, G. Tian, et al., “Mammalian tissues defective in nonsense-mediated mRNA decay display highly aberrant splicing patterns,” Genome Biology, vol. 13, no. 5, p. R35, 2012. View at Publisher · View at Google Scholar
  28. S. Vasudevan and S. W. Peltz, “Nuclear mRNA surveillance,” Current Opinion in Cell Biology, vol. 15, no. 3, pp. 332–337, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Sazani and R. Kole, “Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing,” The Journal of Clinical Investigation, vol. 112, no. 4, pp. 481–486, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. A. Bauman and R. Kole, “Modulation of RNA splicing as a potential treatment for cancer,” Bioengineered Bugs, vol. 2, no. 3, pp. 125–128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Schlee, V. Hornung, and G. Hartmann, “siRNA and isRNA: two edges of one sword,” Molecular Therapy, vol. 14, no. 4, pp. 463–470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Poeck, R. Besch, C. Maihoefer et al., “5-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma,” Nature Medicine, vol. 14, no. 11, pp. 1256–1263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Kenworthy, D. Lambert, F. Yang et al., “Short-hairpin RNAs delivered by lentiviral vector transduction trigger RIG-I-mediated IFN activation,” Nucleic Acids Research, vol. 37, no. 19, pp. 6587–6599, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. U. Kaikkonen, M. T. Y. Lam, and C. K. Glass, “Non-coding RNAs as regulators of gene expression and epigenetics,” Cardiovascular Research, vol. 90, no. 3, pp. 430–440, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Knee and P. R. Murphy, “Regulation of gene expression by natural antisense RNA transcripts,” Neurochemistry International, vol. 31, no. 3, pp. 379–392, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Han, D. Kim, and K. V. Morris, “Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 30, pp. 12422–12427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Nishizawa, T. Okumura, Y. Ikeya, and T. Kimura, “Regulation of inducible gene expression by natural antisense transcripts,” Frontiers in Bioscience, vol. 1, no. 17, pp. 938–958, 2012.