About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 656319, 9 pages
http://dx.doi.org/10.1155/2013/656319
Research Article

Expression of N-Acetylgalactosamine 4-Sulfate 6-O-Sulfotransferase Involved in Chondroitin Sulfate Synthesis Is Responsible for Pulmonary Metastasis

1Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
2Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan

Received 27 November 2012; Accepted 20 December 2012

Academic Editor: Davide Vigetti

Copyright © 2013 Shuji Mizumoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. V. Iozzo, “Matrix proteoglycans: from molecular design to cellular function,” Annual Review of Biochemistry, vol. 67, pp. 609–652, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Sugahara and H. Kitagawa, “Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans,” Current Opinion in Structural Biology, vol. 10, no. 5, pp. 518–527, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Sugahara, T. Mikami, T. Uyama, S. Mizuguchi, K. Nomura, and H. Kitagawa, “Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate,” Current Opinion in Structural Biology, vol. 13, no. 5, pp. 612–620, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Sugahara and T. Mikami, “Chondroitin/dermatan sulfate in the central nervous system,” Current Opinion in Structural Biology, vol. 17, no. 5, pp. 536–545, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. M. Fuster and J. D. Esko, “The sweet and sour of cancer: glycans as novel therapeutic targets,” Nature Reviews Cancer, vol. 5, no. 7, pp. 526–542, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. E. Faassen, J. A. Schrager, D. J. Klein, T. R. Oegema, J. R. Couchman, and J. B. McCarthy, “A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion,” Journal of Cell Biology, vol. 116, no. 2, pp. 521–531, 1992. View at Scopus
  7. U. Günthert, M. Hofmann, W. Rudy et al., “A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells,” Cell, vol. 65, no. 1, pp. 13–24, 1991. View at Scopus
  8. J. Iida, A. M. L. Meijne, J. R. Knutson, L. T. Furcht, and J. B. McCarthy, “Cell surface chondroitin sulfate proteoglycans in tumor cell adhesion, motility and invasion,” Seminars in Cancer Biology, vol. 7, no. 3, pp. 155–162, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. C. A. Cooney, F. Jousheghany, A. Yao-Borengasser et al., “Chondroitin sulfates play a major role in breast cancer metastasis: a role for CSPG4 and CHST11 gene expression in forming surface P-selectin ligands in aggressive breast cancer cells,” Breast Cancer Research, vol. 13, article R58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Kim, H. Takahashi, W. W. Lin et al., “Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis,” Nature, vol. 457, no. 7225, pp. 102–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kusche-Gullberg and L. Kjellén, “Sulfotransferases in glycosaminoglycan biosynthesis,” Current Opinion in Structural Biology, vol. 13, no. 5, pp. 605–611, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Klüppel, T. N. Wight, C. Chan, A. Hinek, and J. L. Wrana, “Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis,” Development, vol. 132, no. 17, pp. 3989–4003, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Thiele, M. Sakano, H. Kitagawa et al., “Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 27, pp. 10155–10160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. H. H. van Roij, S. Mizumoto, S. Yamada et al., “Spondyloepiphyseal dysplasia, omani type: further definition of the phenotype,” American Journal of Medical Genetics A, vol. 146, no. 18, pp. 2376–2384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Tuysuz, S. Mizumoto, K. Sugahara, A. Çelebi, S. Mundlos, and S. Turkmen, “Omani-type spondyloepiphyseal dysplasia with cardiac involvement caused by a missense mutation in CHST3,” Clinical Genetics, vol. 75, no. 4, pp. 375–383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Nadanaka, A. Clement, K. Masayama, A. Faissner, and K. Sugahara, “Characteristic hexasaccharide sequences in octasaccharides derived from shark cartilage chondroitin sulfate D with a neurite outgrowth promoting activity,” Journal of Biological Chemistry, vol. 273, no. 6, pp. 3296–3307, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Bao, T. Muramatsu, and K. Sugahara, “Demonstration of the pleiotrophin-binding oligosaccharide sequences isolated from chondroitin sulfate/dermatan sulfate hybrid chains of embryonic pig brains,” Journal of Biological Chemistry, vol. 280, no. 42, pp. 35318–35328, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Purushothaman, K. Sugahara, and A. Faissner, “Chondroitin sulfate, “wobble motifs” modulate maintenance and differentiation of neural stem cells and their progeny,” Journal of Biological Chemistry, vol. 287, no. 5, pp. 2935–2942, 2012.
  19. K. Bergefall, E. Trybala, M. Johansson et al., “Chondroitin sulfate characterized by the E-disaccharide unit is a potent inhibitor of herpes simplex virus infectivity and provides the virus binding sites on gro2C cells,” Journal of Biological Chemistry, vol. 280, no. 37, pp. 32193–32199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Uyama, M. Ishida, T. Izumikawa et al., “Chondroitin 4-O-sulfotransferase-1 regulates E disaccharide expression of chondroitin sulfate required for herpes simplex virus infectivity,” Journal of Biological Chemistry, vol. 281, no. 50, pp. 38668–38674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Purushothaman, J. Fukuda, S. Mizumoto et al., “Functions of chondroitin sulfate/dermatan sulfate chains in brain development: critical roles of E and iE disaccharide units recognized by a single chain antibody GD3G7,” Journal of Biological Chemistry, vol. 282, no. 27, pp. 19442–19452, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. G. B. ten Dam, E. M. A. van de Westerlo, A. Purushothaman et al., “Antibody GD3G7 selected against embryonic glycosaminoglycans defines chondroitin sulfate-E domains highly up-regulated in ovarian cancer and involved in vascular endothelial growth factor binding,” American Journal of Pathology, vol. 171, no. 4, pp. 1324–1333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. K. N. Sugahara, T. Hirata, T. Tanaka et al., “Chondroitin sulfate E fragments enhance CD44 cleavage and CD44-dependent motility in tumor cells,” Cancer Research, vol. 68, no. 17, pp. 7191–7199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Ohtake, Y. Ito, M. Fukuta, and O. Habuchi, “Human N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase cDNA is related to human B cell recombination activating gene-associated gene,” Journal of Biological Chemistry, vol. 276, no. 47, pp. 43894–43900, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Ohtake-Niimi, S. Kondo, T. Ito et al., “Mice deficient in N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase are unable to synthesize chondroitin/dermatan sulfate containing N-acetylgalactosamine 4,6-bissulfate residues and exhibit decreased protease activity in bone marrow-derived mast cells,” Journal of Biological Chemistry, vol. 285, no. 27, pp. 20793–20805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Ito, M. Watanabe, T. Nishizawa et al., “The utility of formalin-fixed and paraffin-embedded tissue blocks for quantitative analysis of N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase mRNA expressed by colorectal cancer cells,” Acta Histochemica et Cytochemica, vol. 40, no. 2, pp. 53–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Li, G. B. ten Dam, S. Murugan et al., “Involvement of highly sulfated chondroitin sulfate in the metastasis of the Lewis lung carcinoma cells,” Journal of Biological Chemistry, vol. 283, no. 49, pp. 34294–34304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Mizumoto, J. Takahashi, and K. Sugahara, “Receptor for advanced glycation end products (RAGE) functions as receptor for specific sulfated glycosaminoglycans, and anti-RAGE antibody or sulfated glycosaminoglycans delivered in vivo inhibit pulmonary metastasis of tumor cells,” Journal of Biological Chemistry, vol. 287, no. 23, pp. 18985–18994, 2012.
  29. A. Kinoshita and K. Sugahara, “Microanalysis of glycosaminoglycan-derived oligosaccharides labeled with a fluorophore 2-aminobenzamide by high-performance liquid chromatography: application to disaccharide composition analysis and exosequencing of oligosaccharides,” Analytical Biochemistry, vol. 269, no. 2, pp. 367–378, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Mizumoto and K. Sugahara, “Glycosaminoglycan chain analysis and characterization (glycosylation/epimerization),” Methods in Molecular Biology, vol. 836, pp. 99–115, 2012.
  31. B. Rashidi, M. Yang, P. Jiang et al., “A highly metastatic Lewis lung carcinoma orthotopic green fluorescent protein model,” Clinical and Experimental Metastasis, vol. 18, no. 1, pp. 57–60, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. I. J. Fidler, “The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited,” Nature Reviews Cancer, vol. 3, no. 6, pp. 453–458, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. P. S. Steeg, “Tumor metastasis: mechanistic insights and clinical challenges,” Nature Medicine, vol. 12, no. 8, pp. 895–904, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. A. Eccles and D. R. Welch, “Metastasis: recent discoveries and novel treatment strategies,” The Lancet, vol. 369, no. 9574, pp. 1742–1757, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Friedl and K. Wolf, “Tumour-cell invasion and migration: diversity and escape mechanisms,” Nature Reviews Cancer, vol. 3, no. 5, pp. 362–374, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. S. Deepa, Y. Umehara, S. Higashiyama, N. Itoh, and K. Sugahara, “Specific molecular interactions of oversulfated chondroitin sulfate E with various heparin-binding growth factors: implications as a physiological binding partner in the brain and other tissues,” Journal of Biological Chemistry, vol. 277, no. 46, pp. 43707–43716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Ruoslahti and E. Engvall, “Complexing of fibronectin glycosaminoglycans and collagen,” Biochimica et Biophysica Acta, vol. 631, no. 2, pp. 350–358, 1980. View at Scopus
  38. E. G. Hayman, A. Oldberg, G. R. Martin, and E. Ruoslahti, “Codistribution of heparan sulfate proteoglycan, laminin, and fibronectin in the extracellular matrix of normal rat kidney cells and their coordinate absence in transformed cells,” Journal of Cell Biology, vol. 94, no. 1, pp. 28–35, 1982. View at Scopus
  39. M. P. Hoffman, J. A. Engbring, P. K. Nielsen et al., “Cell type-specific differences in glycosaminoglycans modulate the biological activity of a heparin-binding peptide (RKRLQVQLSIRT) from the G domain of the laminin α1 chain,” Journal of Biological Chemistry, vol. 276, no. 25, pp. 22077–22085, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Zhang, J. Nakayama, C. Ohyama et al., “Sialyl Lewis X-dependent lung colonization of B16 melanoma cells through a selectin-like endothelial receptor distinct from E- or P-selectin,” Cancer Research, vol. 62, no. 15, pp. 4194–4198, 2002. View at Scopus
  41. B. Monzavi-Karbassi, J. S. Stanley, L. Hennings et al., “Chondroitin sulfate glycosaminoglycans as major P-selectin ligands on metastatic breast cancer cell lines,” International Journal of Cancer, vol. 120, no. 6, pp. 1179–1191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Kawashima, K. Atarashi, M. Hirose et al., “Oversulfated chondroitin/dermatan sulfates containing GlcAβ1/IdoAα1-3GalNAc(4,6-O-disulfate) interact with L- and P-selectin and chemokines,” Journal of Biological Chemistry, vol. 277, no. 15, pp. 12921–12930, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. C. H. Chou, C. M. Teng, K. Y. Tzen, Y. C. Chang, J. H. Chen, and J. C. H. Cheng, “MMP-9 from sublethally irradiated tumor promotes Lewis lung carcinoma cell invasiveness and pulmonary metastasis,” Oncogene, vol. 31, pp. 458–468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Munesue, Y. Yoshitomi, Y. Kusano et al., “A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis,” Journal of Biological Chemistry, vol. 282, no. 38, pp. 28164–28174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Iida, D. Pei, T. Kang et al., “Melanoma chondroitin sulfate proteoglycan regulates matrix metalloproteinase-dependent human melanoma invasion into type I collagen,” Journal of Biological Chemistry, vol. 276, no. 22, pp. 18786–18794, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Shintani, S. Takashima, Y. Asano et al., “Glycosaminoglycan modification of neuropilin-1 modulates VEGFR2 signaling,” EMBO Journal, vol. 25, no. 13, pp. 3045–3055, 2006. View at Publisher · View at Google Scholar · View at Scopus