About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 656531, 10 pages
http://dx.doi.org/10.1155/2013/656531
Review Article

Biomedical and Clinical Promises of Human Pluripotent Stem Cells for Neurological Disorders

1Faculty of Health Sciences, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
2School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

Received 13 July 2013; Accepted 13 August 2013

Academic Editor: Ken-ichi Isobe

Copyright © 2013 Nopporn Jongkamonwiwat and Parinya Noisa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Li, M. L. Baroja, A. Majumdar et al., “Human embryonic stem cells possess immune-privileged properties,” Stem Cells, vol. 22, no. 4, pp. 4448–4456, 2004. View at Scopus
  2. P. Menendez, C. Bueno, L. Wang, and M. Bhatia, “Human embryonic stem cells: potential tool for achieving immunotolerance?” Stem Cell Reviews, vol. 1, no. 2, pp. 151–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Noisa and R. Parnpai, “Technical challenges in the derivation of human pluripotent cells,” Stem Cells International, vol. 2011, Article ID 907961, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Tachibana, P. Amato, M. Sparman, et al., “Human embryonic stem cells derived by somatic cell nuclear transfer,” Cell, vol. 153, no. 6, pp. 61228–61238, 2013.
  5. A. J. French, S. H. Wood, and A. O. Trounson, “Human therapeutic cloning (NTSC): applying research from mammalian reproductive cloning,” Stem Cell Reviews, vol. 2, no. 4, pp. 265–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Einsiedel, S. Premji, R. Geransar, N. C. Orton, T. Thavaratnam, and L. K. Bennett, “Diversity in public views toward stem cell sources and policies,” Stem Cell Reviews and Reports, vol. 5, no. 2, pp. 102–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Trounson, “Human embryonic stem cells: mother of all cell and tissue types,” Reproductive Biomedicine Online, vol. 4, supplement 1, pp. 58–63, 2002. View at Scopus
  9. W. Chen, N. Jongkamonwiwat, L. Abbas, et al., “Restoration of auditory evoked responses by human ES-cell-derived otic progenitors,” Nature, vol. 490, no. 7419, pp. 278–282, 2012.
  10. P. Koch, T. Opitz, J. A. Steinbeck, J. Ladewig, and O. Brüstle, “A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3225–3230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Itsykson, N. Ilouz, T. Turetsky et al., “Derivation of neural precursors from human embryonic stem cells in the presence of noggin,” Molecular and Cellular Neuroscience, vol. 30, no. 1, pp. 24–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Gerrard, L. Rodgers, and W. Cui, “Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling,” Stem Cells, vol. 23, no. 9, pp. 1234–1241, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Erceg, M. Ronaghi, and M. Stojković, “Human embryonic stem cell differentiation toward regional specific neural precursors,” Stem Cells, vol. 27, no. 1, pp. 78–87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Narkilahti, K. Rajala, H. Pihlajamäki, R. Suuronen, O. Hovatta, and H. Skottman, “Monitoring and analysis of dynamic growth of human embryonic stem cells: comparison of automated instrumentation and conventional culturing methods,” BioMedical Engineering Online, vol. 6, no. 11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. B. E. Reubinoff, P. Itsykson, T. Turetsky et al., “Neural progenitors from human embryonic stem cells,” Nature Biotechnology, vol. 19, no. 12, pp. 1134–1140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. M. K. Carpenter, M. S. Inokuma, J. Denham, T. Mujtaba, C.-P. Chiu, and M. S. Rao, “Enrichment of neurons and neural precursors from human embryonic stem cells,” Experimental Neurology, vol. 172, no. 2, pp. 383–397, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. S. C. Zhang, M. Wernig, I. D. Duncan, O. Brüstle, and J. A. Thomson, “In vitro differentiation of transplantable neural precursors from human embryonic stem cells,” Nature Biotechnology, vol. 19, no. 12, pp. 1129–1133, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Trounson, “The production and directed differentiation of human embryonic stem cells,” Endocrine Reviews, vol. 27, no. 2, pp. 208–219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Chaddah, M. Arntfield, S. Runciman, et al., “Clonal neural stem cells from human embryonic stem cell colonies,” The Journal of Neuroscience, vol. 32, no. 23, pp. 7771–7781, 2012.
  20. J. C. Pina-Crespo, M. Talantova, E. G. Cho, et al., “High-frequency hippocampal oscillations activated by optogenetic stimulation of transplanted human ESC-derived neurons,” The Journal of Neuroscience, vol. 32, no. 45, pp. 15837–15842, 2012.
  21. G. Lee, H. Kim, Y. Elkabetz et al., “Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells,” Nature Biotechnology, vol. 25, no. 12, pp. 1468–1475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Zhang, J. Wang, G. Chen, D. Fan, and M. Deng, “Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells,” Biochemical and Biophysical Research Communications, vol. 404, no. 2, pp. 610–614, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Erceg, M. Ronaghi, M. Oria et al., “Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection,” Stem Cells, vol. 28, no. 9, pp. 1541–1549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Lee, G. A. Shamy, Y. Elkabetz et al., “Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons,” Stem Cells, vol. 25, no. 8, pp. 1931–1939, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. E. Hester, M. J. Murtha, S. Song et al., “Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes,” Molecular Therapy, vol. 19, no. 10, pp. 1905–1912, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. S. Cho, Y. E. Lee, J. Y. Kim, et al., “Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3392–3397, 2008.
  27. A. L. Perrier, V. Tabar, T. Barberi et al., “Derivation of midbrain dopamine neurons from human embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 34, pp. 12543–12548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Krencik, J. P. Weick, Y. Liu, Z.-J. Zhang, and S.-C. Zhang, “Specification of transplantable astroglial subtypes from human pluripotent stem cells,” Nature Biotechnology, vol. 29, no. 6, pp. 528–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Wichterle, I. Lieberam, J. A. Porter, and T. M. Jessell, “Directed differentiation of embryonic stem cells into motor neurons,” Cell, vol. 110, no. 3, pp. 385–397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. M. F. Pera, J. Andrade, S. Houssami et al., “Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin,” Journal of Cell Science, vol. 117, no. 7, pp. 1269–1280, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. M. Chambers, C. A. Fasano, E. P. Papapetrou, M. Tomishima, M. Sadelain, and L. Studer, “Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling,” Nature Biotechnology, vol. 27, no. 3, pp. 275–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. S. Kim, J. S. Lee, J. W. Leem et al., “Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity,” Stem Cell Reviews and Reports, vol. 6, no. 2, pp. 270–281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. R. O'Rahilly and F. Müller, “Neurulation in the normal human embryo,” Ciba Foundation Symposium, vol. 181, pp. 70–82, 1994. View at Scopus
  34. S. Yao, S. Chen, J. Clark et al., “Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 6907–6912, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Elkabetz, G. Panagiotakos, G. Al Shamy, N. D. Socci, V. Tabar, and L. Studer, “Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage,” Genes and Development, vol. 22, no. 2, pp. 152–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. C. Zhang, “Neural subtype specification from embryonic stem cells,” Brain Pathology, vol. 16, no. 2, pp. 132–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. O. Brüstle, K. N. Jones, R. D. Learish et al., “Embryonic stem cell-derived glial precursors: a source of myelinating transplants,” Science, vol. 285, no. 5428, pp. 754–756, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. X. J. Li, Z. W. Du, E. D. Zarnowska et al., “Specification of motoneurons from human embryonic stem cells,” Nature Biotechnology, vol. 23, no. 2, pp. 215–221, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. W. Du, X. J. Li, G. D. Nguyen, and S. C. Zhang, “Induced expression of Olig2 is sufficient for oligodendrocyte specification but not for motoneuron specification and astrocyte repression,” Molecular and Cellular Neuroscience, vol. 33, no. 4, pp. 371–380, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Temple, “The development of neural stem cells,” Nature, vol. 414, no. 6859, pp. 112–117, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Qian, Q. Shen, S. K. Goderie et al., “Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells,” Neuron, vol. 28, no. 1, pp. 69–80, 2000. View at Scopus
  42. J. Q. Wu, L. Habegger, P. Noisa et al., “Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 11, pp. 5254–5259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Zhang, C. Pak, Y. Han, et al., “Rapid single-step induction of functional neurons from human pluripotent stem cells,” Neuron, vol. 78, no. 5, pp. 785–798, 2013.
  44. E. C. Thoma, E. Wischmeyer, N. Offen, et al., “Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons,” PLoS ONE, vol. 7, no. 6, Article ID e38651, 2012.
  45. X. Zhang, C. T. Huang, J. Chen et al., “Pax6 is a human neuroectoderm cell fate determinant,” Cell Stem Cell, vol. 7, no. 1, pp. 90–100, 2010. View at Scopus
  46. T. Kunkanjanawan, P. Noisa, and R. Parnpai, “Modeling neurological disorders by human induced pluripotent stem cells,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 350131, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Schuldiner, O. Yanuka, J. Itskovitz-Eldor, D. A. Melton, and N. Benvenisty, “Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 21, pp. 11307–11312, 2000. View at Scopus
  48. D. C. Weinstein and A. Hemmati-Brivanlou, “Neural induction,” Annual Review of Cell and Developmental Biology, vol. 15, pp. 411–433, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. S. H. Lee, N. Lumelsky, L. Studer, J. M. Auerbach, and R. D. McKay, “Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells,” Nature Biotechnology, vol. 18, no. 6, pp. 675–679, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. A. M. Maroof, S. Keros, J. A. Tyson, et al., “Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells,” Cell Stem Cell, vol. 12, no. 5, pp. 559–572, 2013.
  51. I. H. Park, N. Arora, H. Huo et al., “Disease-specific induced pluripotent stem cells,” Cell, vol. 134, no. 5, pp. 877–886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. J. T. Dimos, K. T. Rodolfa, K. K. Niakan et al., “Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons,” Science, vol. 321, no. 5893, pp. 1218–1221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Lee, C. N. Ramirez, H. Kim, et al., “Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression,” Nature Biotechnology, vol. 30, no. 12, pp. 1244–1248, 2012.
  54. J. Rohwedel, K. Guan, C. Hegert, and A. M. Wobus, “Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity and embryotoxicity studies: present state and future prospects,” Toxicology In Vitro, vol. 15, no. 6, pp. 741–753, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Bremer, C. Pellizzer, S. Adler, M. Paparella, and J. De Lange, “Development of a testing strategy for detecting embryotoxic hazards of chemicals in vitro by using embryonic stem cell models,” Alternatives to Laboratory Animals, vol. 30, supplement 2, pp. 107–109, 2002. View at Scopus
  56. A. Lorico, G. Rappa, R. A. Flavell, and A. C. Sartorelli, “Double knockout of the MRP gene leads to increased drug sensitivity in vitro,” Cancer Research, vol. 56, no. 23, pp. 5351–5355, 1996. View at Scopus
  57. T. Ogi, Y. Shinkai, K. Tanaka, and H. Ohmori, “Polκ protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15548–15553, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Li, M. A. Ramirez, E. Rose, and A. L. Beaudet, “A gene fusion method to screen for regulatory effects on gene expression: application to the LDL receptor,” Human Molecular Genetics, vol. 11, no. 26, pp. 3257–3265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. W. M. Armstead, K. Ganguly, J. W. Kiessling et al., “Signaling, delivery and age as emerging issues in the benefit/risk ratio outcome of tPA for treatment of CNS ischemic disorders,” Journal of Neurochemistry, vol. 113, no. 2, pp. 303–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Ma, B. Hu, Y. Liu et al., “Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice,” Cell Stem Cell, vol. 10, no. 4, pp. 455–464, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. C. R. Nicholas, J. Chen, Y. Tang, et al., “Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development,” Cell Stem Cell, vol. 12, no. 5, pp. 573–586, 2013.
  62. O. Tsuji, K. Miura, K. Fujiyoshi, S. Momoshima, M. Nakamura, and H. Okano, “Cell therapy for spinal cord injury by neural stem/progenitor cells derived from iPS/ES cells,” Neurotherapeutics, vol. 8, no. 4, pp. 668–676, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Jin, X. Mao, L. Xie et al., “Delayed transplantation of human neural precursor cells improves outcome from focal cerebral ischemia in aged rats,” Aging Cell, vol. 9, no. 6, pp. 1076–1083, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. A. U. Hicks, R. S. Lappalainen, S. Narkilahti et al., “Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery,” European Journal of Neuroscience, vol. 29, no. 3, pp. 562–574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. O. Mohamad, D. Drury-Stewart, M. Song, et al., “Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice,” PLoS ONE, vol. 8, no. 5, Article ID e64160, 2013.
  66. K. A. Puttonen, M. Ruponen, R. Kauppinen, et al., “Improved method of producing human neural progenitor cells of high purity and in large quantities from pluripotent stem cells for transplantation studies,” Cell Transplant, 2012. View at Publisher · View at Google Scholar
  67. M. Sundberg, P.-H. Andersson, E. A. kesson et al., “Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue,” Cell Transplantation, vol. 20, no. 2, pp. 177–191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Fujimoto, M. Abematsu, A. Falk, et al., “Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like,” Stem Cells, vol. 30, no. 6, pp. 1163–1173, 2012.
  69. D. Doi, A. Morizane, T. Kikuchi et al., “Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson's disease,” Stem Cells, vol. 30, no. 5, pp. 935–945, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Luo, Y. Fan, X. Chen, et al., “Generation of induced pluripotent stem cells from Asian patients with chronic neurodegenerative diseases,” Journal of Reproduction and Development, vol. 58, no. 5, pp. 515–521, 2012.
  71. E. Tirotta, K. S. Carbajal, C. S. Schaumburg, L. Whitman, and T. E. Lane, “Cell replacement therapies to promote remyelination in a viral model of demyelination,” Journal of Neuroimmunology, vol. 224, no. 1-2, pp. 101–107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. WHO, Neurological Disorders : Public Health Challenges, World Health Organization, Geneva, Switzerland, 2006.
  73. A. Durukan and T. Tatlisumak, “Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia,” Pharmacology Biochemistry and Behavior, vol. 87, no. 1, pp. 179–197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. S. M. Graham, L. D. McCullough, and S. J. Murphy, “Animal models of ischemic stroke: balancing experimental aims and animal care,” Comparative Medicine, vol. 54, no. 5, pp. 486–496, 2004. View at Scopus
  75. M. Bacigaluppi, G. Comi, and D. M. Hermann, “Animal models of ischemic stroke—part two: modeling cerebral ischemia,” The Open Neurology Journal, vol. 4, pp. 34–38, 2010.
  76. M. Philip, M. Benatar, M. Fisher, and S. I. Savitz, “Methodological quality of animal studies of neuroprotective agents currently in phase II/III acute ischemic stroke trials,” Stroke, vol. 40, no. 2, pp. 577–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. R. E. White, M. Rao, J. C. Gensel, D. M. McTigue, B. K. Kaspar, and L. B. Jakeman, “Transforming growth factor α transforms astrocytes to a growth-supportive phenotype after spinal cord injury,” The Journal of Neuroscience, vol. 31, no. 42, pp. 15173–15187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. J. F. Bonner, A. Blesch, B. Neuhuber, and I. Fischer, “Promoting directional axon growth from neural progenitors grafted into the injured spinal cord,” Journal of Neuroscience Research, vol. 88, no. 6, pp. 1182–1192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. G. W. Hawryluk, A. Mothe, J. Wang, et al., “An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury,” Stem Cells and Development, vol. 21, no. 12, pp. 2222–2238, 2012.
  80. W. Tetzlaff, E. B. Okon, S. Karimi-Abdolrezaee et al., “A systematic review of cellular transplantation therapies for spinal cord injury,” Journal of Neurotrauma, vol. 28, no. 8, pp. 1611–1682, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. D. Garbossa, M. Boido, M. Fontanella, C. Fronda, A. Ducati, and A. Vercelli, “Recent therapeutic strategies for spinal cord injury treatment: possible role of stem cells,” Neurosurgical Review, vol. 35, no. 3, pp. 293–311, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. H. J. Im, W. Hwang do, H. K. Lee, et al., “In vivo visualization and monitoring of viable neural stem cells using noninvasive bioluminescence imaging in the 6-hydroxydopamine-induced mouse model of Parkinson disease,” Molecular Imaging, vol. 12, no. 4, pp. 224–234, 2013.
  83. W. Dauer and S. Przedborski, “Parkinson's disease: mechanisms and models,” Neuron, vol. 39, no. 6, pp. 889–909, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. G. E. Meredith, S. Totterdell, E. Petroske, K. Santa Cruz, R. C. Callison Jr., and Y.-S. Lau, “Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson's disease,” Brain Research, vol. 956, no. 1, pp. 156–165, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Duty and P. Jenner, “Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease,” British Journal of Pharmacology, vol. 164, no. 4, pp. 1357–1391, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. E. Zanoteli, J. R. Maximino, U. Conti Reed, and G. Chadi, “Spinal muscular atrophy: from animal model to clinical trial,” Functional Neurology, vol. 25, no. 2, pp. 73–79, 2010. View at Scopus
  87. X. Li, Y. Guan, Y. Chen, et al., “Expression of Wnt5a and its receptor Fzd2 is changed in the spinal cord of adult amyotrophic lateral sclerosis transgenic mice,” International Journal of Clinical and Experimental Pathology, vol. 6, no. 7, pp. 1245–1260, 2013.
  88. S. Marconi, M. Bonaconsa, I. Scambi, et al., “Systemic treatment with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral sclerosis murine model,” Neuroscience, vol. 28, no. 248C, pp. 333–343, 2013. View at Publisher · View at Google Scholar
  89. A. D. Ebert, J. Yu, F. F. Rose Jr. et al., “Induced pluripotent stem cells from a spinal muscular atrophy patient,” Nature, vol. 457, no. 7227, pp. 277–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Bai, J. Hecker, A. Kerstetter, et al., “Myelin repair and functional recovery mediated by neural cell transplantation in a mouse model of multiple sclerosis,” Neuroscience Bulletin, vol. 29, no. 2, pp. 239–250, 2013.
  91. A. Ascherio and K. L. Munger, “Environmental risk factors for multiple sclerosis—part I: the role of infection,” Annals of Neurology, vol. 61, no. 4, pp. 288–299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Ascherio and K. L. Munger, “Environmental risk factors for multiple sclerosis—part II: noninfectious factors,” Annals of Neurology, vol. 61, no. 6, pp. 504–513, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. M. J. Martin, A. Muotri, F. Gage, and A. Varki, “Human embryonic stem cells express an immunogenic nonhuman sialic acid,” Nature Medicine, vol. 11, no. 2, pp. 228–232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. B. E. Bernstein, T. S. Mikkelsen, X. Xie et al., “A bivalent chromatin structure marks key developmental genes in embryonic stem cells,” Cell, vol. 125, no. 2, pp. 315–326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. T. S. Mikkelsen, M. Ku, D. B. Jaffe et al., “Genome-wide maps of chromatin state in pluripotent and lineage-committed cells,” Nature, vol. 448, no. 7153, pp. 553–560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. H. N. Nguyen, B. Byers, B. Cord et al., “LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress,” Cell Stem Cell, vol. 8, no. 3, pp. 267–280, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Zhao, Z. N. Zhang, Z. Rong, and Y. Xu, “Immunogenicity of induced pluripotent stem cells,” Nature, vol. 474, no. 7350, pp. 212–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Araki, M. Uda, Y. Hoki, et al., “Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells,” Nature, vol. 494, no. 7435, pp. 100–104, 2013.
  99. F. Soldner, J. Laganière, A. W. Cheng et al., “Generation of isogenic pluripotent stem cells differing exclusively at two early onset parkinson point mutations,” Cell, vol. 146, no. 2, pp. 318–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Corti, M. Nizzardo, C. Simone, et al., “Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy,” Science Translational Medicine, vol. 4, no. 165, p. 165ra162, 2012. View at Publisher · View at Google Scholar