About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 658126, 8 pages
http://dx.doi.org/10.1155/2013/658126
Review Article

Immune Modulation and Stereotactic Radiation: Improving Local and Abscopal Responses

1Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, P.O. Box 356043, Seattle, WA 98195, USA
2Department of Radiation Oncology & Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD 21218, USA
3Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD 21218, USA
4Department of Neurosurgery, Johns Hopkins Medicine, Baltimore, MD 21218, USA
5Department of Urology, Johns Hopkins Medicine, Baltimore, MD 21218, USA

Received 16 June 2013; Revised 5 October 2013; Accepted 5 October 2013

Academic Editor: Rumiana Koynova

Copyright © 2013 Jing Zeng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, and R. D. Schreiber, “Cancer immunoediting: from immunosurveillance to tumor escape,” Nature Immunology, vol. 3, no. 11, pp. 991–998, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. R. D. Schreiber, L. J. Old, and M. J. Smyth, “Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion,” Science, vol. 331, no. 6024, pp. 1565–1570, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Matzinger, “Tolerance, danger, and the extended family,” Annual Review of Immunology, vol. 12, pp. 991–1045, 1994. View at Scopus
  4. S. E. A. Street, E. Cretney, and M. J. Smyth, “Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis,” Blood, vol. 97, no. 1, pp. 192–197, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. B. A. Pulaski, M. J. Smyth, and S. Ostrand-Rosenberg, “Interferon-γ-dependent phagocytic cells are a critical component of innate immunity against metastatic mammary carcinoma,” Cancer Research, vol. 62, no. 15, pp. 4406–4412, 2002. View at Scopus
  6. T. Luft, K. C. Pang, E. Thomas et al., “Type I IFNs enhance the terminal differentiation of dendritic cells,” Journal of Immunology, vol. 161, no. 4, pp. 1947–1953, 1998. View at Scopus
  7. G. P. Sims, D. C. Rowe, S. T. Rietdijk, R. Herbst, and A. J. Coyle, “HMGB1 and RAGE in inflammation and cancer,” Annual Review of Immunology, vol. 28, pp. 367–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. G. P. Dunn, L. J. Old, and R. D. Schreiber, “The three Es of cancer immunoediting,” Annual Review of Immunology, vol. 22, pp. 329–360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Zou, “Immunosuppressive networks in the tumour environment and their therapeutic relevance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 263–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. C. G. Drake, “Combination immunotherapy approaches,” Annals of Oncology, vol. 23, supplement 8, pp. 41–46, 2012.
  11. C. E. Hill-Kayser, J. P. Plastaras, Z. Tochner, and E. Glatstein, “TBI during BM and SCT: review of the past, discussion of the present and consideration of future directions,” Bone Marrow Transplantation, vol. 46, no. 4, pp. 475–484, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. L. Campian, X. Ye, M. Brock, et al., “Treatment-related lymphopenia in patients with stage III non-small-cell lung cancer,” Cancer Investigation, vol. 31, no. 3, pp. 183–188, 2013. View at Publisher · View at Google Scholar
  13. L. Harisiadis, G. Kopelson, and C. H. Chang, “Lymphopenia caused by cranial irradiation in children receiving craniospinal radiotherapy,” Cancer, vol. 40, no. 3, pp. 1102–1108, 1977. View at Scopus
  14. S. Yovino, L. Kleinberg, S. A. Grossman, M. Narayanan, and E. Ford, “The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells,” Cancer Investigation, vol. 31, no. 2, pp. 140–144, 2013. View at Publisher · View at Google Scholar
  15. S. Demaria and S. C. Formenti, “Sensors of ionizing radiation effects on the immunological microenvironment of cancer,” International Journal of Radiation Biology, vol. 83, no. 11-12, pp. 819–825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Melcher, S. Todryk, N. Hardwick, M. Ford, M. Jacobson, and R. G. Vile, “Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression,” Nature Medicine, vol. 4, no. 5, pp. 581–587, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Obeid, A. Tesniere, F. Ghiringhelli et al., “Calreticulin exposure dictates the immunogenicity of cancer cell death,” Nature Medicine, vol. 13, no. 1, pp. 54–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Apetoh, F. Ghiringhelli, A. Tesniere et al., “Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy,” Nature Medicine, vol. 13, no. 9, pp. 1050–1059, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Demaria, F. R. Santori, B. Ng, L. Liebes, S. C. Formenti, and S. Vukmanovic, “Select forms of tumor cell apoptosis induce dendritic cell maturation,” Journal of Leukocyte Biology, vol. 77, no. 3, pp. 361–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. S. C. Formenti and S. Demaria, “Radiation therapy to convert the tumor into an in situ vaccine,” International Journal of Radiation Oncology. Biology. Physics, vol. 84, no. 4, pp. 879–880.
  21. E. A. Reits, J. W. Hodge, C. A. Herberts et al., “Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy,” Journal of Experimental Medicine, vol. 203, no. 5, pp. 1259–1271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. T. Garnett, C. Palena, M. Chakarborty, K.-Y. Tsang, J. Schlom, and J. W. Hodge, “Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes,” Cancer Research, vol. 64, no. 21, pp. 7985–7994, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Chakraborty, S. I. Abrams, K. Camphausen et al., “Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy,” Journal of Immunology, vol. 170, no. 12, pp. 6338–6347, 2003. View at Scopus
  24. S. Demaria, B. Ng, M. L. Devitt et al., “Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated,” International Journal of Radiation Oncology Biology Physics, vol. 58, no. 3, pp. 862–870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Zeng, A. P. See, J. Phallen, et al., “Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas,” International Journal of Radiation Oncology Biology Physics, vol. 86, no. 2, pp. 343–349, 2013. View at Publisher · View at Google Scholar
  26. M. Z. Dewan, A. E. Galloway, N. Kawashima et al., “Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody,” Clinical Cancer Research, vol. 15, no. 17, pp. 5379–5388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Demaria, N. Kawashima, A. M. Yang et al., “Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer,” Clinical Cancer Research, vol. 11, no. 2 I, pp. 728–734, 2005. View at Scopus
  28. I. Verbrugge, J. Hagekyriakou, L. L. Sharp, et al., “Radiotherapy increases the permissiveness of established mammary tumors to rejecton by immunomodulatory antibodies,” Cancer Research, vol. 72, no. 13, pp. 3163–3174, 2012. View at Publisher · View at Google Scholar
  29. E. Younes, G. P. Haas, B. Dezso et al., “Local tumor irradiation augments the response to IL-2 therapy in a murine renal adenocarcinoma,” Cellular Immunology, vol. 165, no. 2, pp. 243–251, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. T. J. Harris, E. L. Hipkiss, S. Borzillary et al., “Radiotherapy augments the immune response to prostate cancer in a time-dependent manner,” Prostate, vol. 68, no. 12, pp. 1319–1329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. L. Gulley, P. M. Arlen, and A. Bastian, “Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer,” Clinical Cancer Research, vol. 11, no. 9, pp. 3353–3362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. K.-H. Chi, S.-J. Liu, C.-P. Li et al., “Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma,” Journal of Immunotherapy, vol. 28, no. 2, pp. 129–135, 2005. View at Scopus
  33. Y. H. Kim, D. Gratzinger, C. Harrison et al., “In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study,” Blood, vol. 119, no. 2, pp. 355–363, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. S. K. Seung, B. D. Curti, M. Crittenden, et al., “Phase 1 study of stereotactic body radiotherapy and interleukin-2-tumor and immunological responses,” Science Translational Medicine, vol. 4, no. 137, p. 137ra74.
  35. M. A. Postow, M. K. Callahan, C. A. Barker et al., “Immunologic correlates of the abscopal effect in a patient with melanoma,” New England Journal of Medicine, vol. 366, no. 10, pp. 925–931, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Hiniker, D. S. Chen, S. Reddy, et al., “A systemic complete response of metastatic melanoma to local radiation and immunotherapy,” Translational Oncology, vol. 5, no. 6, pp. 404–407, 2012.
  37. S. F. Slovin, C. S. Higano, O. Hamid, et al., “Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study,” Annals of Oncology, vol. 24, no. 7, pp. 1813–1821, 2013.
  38. D. Schaue, J. A. Ratikan, K. S. Iwamoto, and W. H. McBride, “Maximizing tumor immunity with fractionated radiation,” International Journal of Radiation Oncology Biology Physics, vol. 83, no. 4, pp. 1306–1310, 2012.
  39. Y. Lee, S. L. Auh, Y. Wang et al., “Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment,” Blood, vol. 114, no. 3, pp. 589–595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Demaria and S. C. Formenti, “Radiation as an immunological adjuvant: current evidence on dose and fractionation,” Frontiers in Oncology, vol. 2, p. 153, 2012.
  41. S. S. Ahmad, “Advances in radiotherapy,” British Medical Journal, vol. 345, Article ID e7765, 2012.
  42. Y. Rong and J. Welsh, “Basics of particle therapy II biologic and dosimetric aspects of clinical Hadron therapy,” American Journal of Clinical Oncology, vol. 33, no. 6, pp. 646–649, 2010. View at Publisher · View at Google Scholar · View at Scopus