About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 658925, 8 pages
http://dx.doi.org/10.1155/2013/658925
Review Article

Translational Biomedical Informatics in the Cloud: Present and Future

1Center for Systems Biology, Soochow University, Suzhou 215006, China
2School of Chemistry and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215011, China

Received 8 December 2012; Accepted 17 February 2013

Academic Editor: Ming Ouyang

Copyright © 2013 Jiajia Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. A. Kuhn, A. Knoll, H. W. Mewes, et al., “Informatics and medicine—from molecules to populations,” Methods of Information in Medicine, vol. 47, no. 4, pp. 283–295, 2008.
  2. L. D. Stein, “The case for cloud computing in genome informatics,” Genome Biology, vol. 11, no. 5, article 207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Baker, “Next-generation sequencing: adjusting to data overload,” Nature Methods, vol. 7, no. 7, pp. 495–499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg, “Searching for SNPs with cloud computing,” Genome Biology, vol. 10, no. 11, article R134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. C. Schatz, B. Langmead, and S. L. Salzberg, “Cloud computing and the DNA data race,” Nature Biotechnology, vol. 28, no. 7, pp. 691–693, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. C. Schatz, “CloudBurst: highly sensitive read mapping with MapReduce,” Bioinformatics, vol. 25, no. 11, pp. 1363–1369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/.
  8. IBM/Google Cloud Computing University Initiative, http://www.ibm.com/ibm/ideasfromibm/us/google/index.shtml.
  9. J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. Hadoop, http://hadoop.apache.org/.
  11. A. Rosenthal, P. Mork, M. H. Li, J. Stanford, D. Koester, and P. Reynolds, “Cloud computing: a new business paradigm for biomedical information sharing,” Journal of Biomedical Informatics, vol. 43, no. 2, pp. 342–353, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Flicek, M. R. Amode, D. Barrell, et al., “Ensembl 2012,” Nucleic Acids Research, vol. 40, Database issue, pp. D84–D90, 2012.
  13. 1000 Genomes Project, http://www.1000genomes.org.
  14. A. Matsunaga, M. Tsugawa, and J. Fortes, “CloudBLAST: combining MapReduce and virtualization on distributed resources for bioinformatics applications,” in Proceedings of the 4th IEEE International Conference on eScience (eScience '08), pp. 222–229, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Sudha Sadasivam and G. Baktavatchalam, “A novel approach to multiple sequence alignment using hadoop data grids,” International Journal of Bioinformatics Research and Applications, vol. 6, no. 5, pp. 472–483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. P. Wall, P. Kudtarkar, V. A. Fusaro, R. Pivovarov, P. Patil, and P.J. Tonellato, “Cloud computing for comparative genomics,” BMC Bioinformatics, vol. 11, article 259, 2010.
  17. I. Kim, J. Y. Jung, T. F. Deluca, T. H. Nelson, and D. P. Wall, “Cloud computing for comparative genomics with windows azure platform,” Evolutionary Bioinformatics Online, vol. 8, pp. 527–534, 2012.
  18. G. Zhao, D. Bu, C. Liu, et al., “CloudLCA: finding the lowest common ancestor in metagenome analysis using cloud computing,” Protein Cell, vol. 3, no. 2, pp. 148–152, 2012.
  19. P. Kudtarkar, T. F. Deluca, V. A. Fusaro, P. J. Tonellato, and D. P. Wall, “Cost-effective cloud computing: a case study using the comparative genomics tool, roundup,” Evolutionary Bioinformatics Online, vol. 6, pp. 197–203, 2011.
  20. P. di Tommaso, M. Orobitg, F. Guirado, F. Cores, T. Espinosa, and C. Notredame, “Cloud-Coffee: implementation of a parallel consistency-based multiple alignment algorithm in the T-coffee package and its benchmarking on the Amazon Elastic-Cloud,” Bioinformatics, vol. 26, no. 15, pp. 1903–1904, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. B. D. Halligan, J. F. Geiger, A. K. Vallejos, A. S. Greene, and S. N. Twigger, “Low cost, scalable proteomics data analysis using Amazon's cloud computing services and open source search algorithms,” Journal of Proteome Research, vol. 8, no. 6, pp. 3148–3153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Meng, G. Pratx, and L. Xing, “Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment,” Medical Physics, vol. 38, no. 12, pp. 6603–6609, 2011. View at Publisher · View at Google Scholar
  23. M. S. Avila-Garcia, A. E. Trefethen, M. Brady, F. Gleeson, and D. Goodman, “Lowering the barriers to cancer imaging,” in Proceedings of the 4th IEEE International Conference on eScience (eScience '08), pp. 63–70, Indianapolis, Ind, USA, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. L.A. Silva, C. Costa, and J. L. Oliveira, “DICOM relay over the cloud,” International Journal of Computer Assisted Radiology and Surgery, 2012. View at Publisher · View at Google Scholar
  25. Euro-Bioimaging, http://www.eurobioimaging.eu/.
  26. E. J. Schweitzer, “Reconciliation of the cloud computing model with US federal electronic health record regulations,” Journal of the American Medical Informatics Association, vol. 19, no. 2, pp. 161–165, 2011.
  27. G. Fernandez-Cardenosa, I. de la Torre-Diez, M. Lopez-Coronado, and J. J. Rodrigues, “Analysis of cloud-based solutions on EHRs systems in different scenarios,” Journal of Medical Systems, vol. 36, no. 6, pp. 3777–3782, 2012.
  28. J. Haughton, “Look up: the right EHR may be in the cloud. Major advantages include interoperability and flexibility,” Health Management Technology, vol. 32, no. 2, p. 52, 2011. View at Scopus
  29. J. Kabachinski, “What's the forecast for cloud computing in healthcare?” Biomedical Instrumentation and Technology, vol. 45, no. 2, pp. 146–150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. T. S. Chen, C. H. Liu, T. L. Chen, C. S. Chen, J. G. Bau, and T. C. Lin, “Secure Dynamic access control scheme of PHR in cloud computing,” Journal of Medical Systems, vol. 36, no. 6, pp. 4005–4020, 2012.
  31. Y. Y. Chen, J. C. Lu, and J. K. Jan, “A secure EHR system based on hybrid clouds,” Journal of Medical Systems, vol. 36, no. 5, pp. 3375–3384, 2012.
  32. C. Doukas, T. Pliakas, and I. Maglogiannis, “Mobile healthcare information management utilizing Cloud Computing and Android OS,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2010, pp. 1037–1040, 2010. View at Scopus
  33. C. O. Rolim, F. L. Koch, C. B. Westphall, J. Werner, A. Fracalossi, and G. S. Salvador, “A cloud computing solution for patient's data collection in health care institutions,” in Proceedings of the 2nd International Conference on eHealth, Telemedicine, and Social Medicine (eTELEMED '10), pp. 95–99, New York, NY, USA, February 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. G. S. V. R. K. Rao, K. Sundararaman, and J. Parthasarathi, “Dhatri—a pervasive cloud initiative for primary healthcare services,” in Proceedings of the 14th International Conference on Intelligence in Next Generation Networks (ICIN '10), Berlin, Germany, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. MicrosoftHealthVault, http://www.microsoft.com/en-us/healthvault/.
  36. E. Hansen, “HIPAA (Health Insurance Portability and Accountability Act) rules: federal and state enforcement,” Medical Interface, vol. 10, no. 8, pp. 96–102, 1997. View at Scopus
  37. M. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching and set intersection,” in Advances in Cryptology-EUROCRYPT 2004, pp. 1–19, 2004.
  38. V. Danilatou and S. Ioannidis, “Security and privacy architectures for biomedical cloud computing,” in Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB '10), November 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Brazma, P. Hingamp, J. Quackenbush et al., “Minimum information about a microarray experiment (MIAME)—toward standards for microarray data,” Nature Genetics, vol. 29, no. 4, pp. 365–371, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Blume, “DICOM (Digital Imaging and Communications in Medicine) state of the nation. Are you afraid of data compression?” Administrative Radiology Journal, vol. 15, no. 11, pp. 36–40, 1996. View at Scopus
  41. M. Tsiknakis, D. Kafetzopoulos, G. Potamias, A. Analyti, K. Marias, and A. Manganas, “Building a European biomedical grid on cancer: the ACGT Integrated Project,” Studies in Health Technology and Informatics, vol. 120, pp. 247–258, 2006. View at Scopus
  42. I. S. Kohane, S. E. Churchill, and S. N. Murphy, “A translational engine at the national scale: informatics for integrating biology and the bedside,” Journal of the American Medical Informatics Association, vol. 19, no. 2, pp. 181–185, 2011.
  43. K. K. Kakazu, L. W. Cheung, and W. Lynne, “The Cancer Biomedical Informatics Grid (caBIG): pioneering an expansive network of information and tools for collaborative cancer research,” Hawaii Medical Journal, vol. 63, no. 9, pp. 273–275, 2004. View at Scopus
  44. J. R. MacFall, W. D. Taylor, D. E. Rex et al., “Lobar distribution of lesion volumes in late-life depression: the Biomedical Informatics Research Network (BIRN),” Neuropsychopharmacology, vol. 31, no. 7, pp. 1500–1507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Baldi and A. D. Long, “A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes,” Bioinformatics, vol. 17, no. 6, pp. 509–519, 2001. View at Scopus
  46. W. Pan, “A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments,” Bioinformatics, vol. 18, no. 4, pp. 546–554, 2002. View at Scopus
  47. P. Tamayo, D. Slonim, J. Mesirov et al., “Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 2907–2912, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Götz, J. M. García-Gómez, J. Terol et al., “High-throughput functional annotation and data mining with the Blast2GO suite,” Nucleic Acids Research, vol. 36, no. 10, pp. 3420–3435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. K. G. Becker, D. A. Hosack, G. Dennis et al., “PubMatrix: a tool for multiplex literature mining,” BMC Bioinformatics, vol. 4, article 61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Quackenbush, “Computational analysis of microarray data,” Nature Reviews Genetics, vol. 2, no. 6, pp. 418–427, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. F. M. Selaru, Y. Xu, J. Yin et al., “Artificial neural networks distinguish among subtypes of neoplastic colorectal lesions,” Gastroenterology, vol. 122, no. 3, pp. 606–613, 2002. View at Scopus
  53. A. J. Saldanha, “Java Treeview—extensible visualization of microarray data,” Bioinformatics, vol. 20, no. 17, pp. 3246–3248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Rutherford, J. Parkhill, J. Crook et al., “Artemis: sequence visualization and annotation,” Bioinformatics, vol. 16, no. 10, pp. 944–945, 2000. View at Scopus
  55. A. A. Porollo, R. Adamczak, and J. Meller, “POLYVIEW: a flexible visualization tool for structural and functional annotations of proteins,” Bioinformatics, vol. 20, no. 15, pp. 2460–2462, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. W. Fleischmann, S. Möller, A. Gateau, and R. Apweiler, “A novel method for automatic functional annotation of proteins,” Bioinformatics, vol. 15, no. 3, pp. 228–233, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. L. B. Koski, M. W. Gray, B. F. Lang, and G. Burger, “AutoFACT: an automatic functional annotation and classification tool,” BMC Bioinformatics, vol. 6, article 151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. F. Meyer, D. Paarmann, M. D'Souza et al., “The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes,” BMC Bioinformatics, vol. 9, article 386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. J. R. Smith and S. F. Chang, “VisualSEEk: a fully automated content-based image query system,” in Proceedings of the 4th ACM international conference on Multimedia, pp. 87–98, November 1996. View at Scopus
  60. D. M. Squire, W. Müller, H. Müller, and T. Pun, “Content-based query of image databases: inspirations from text retrieval,” Pattern Recognition Letters, vol. 21, no. 13-14, pp. 1193–1198, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Ohno-Machado, V. Bafna, A. A. Boxwala, et al., “iDASH: integrating data for analysis, anonymization, and sharing,” Journal of the American Medical Informatics Association, vol. 19, no. 2, pp. 196–201, 2012.
  62. C. Friedman, “A broad-coverage natural language processing system,” Proceedings/AMIA. Annual Symposium. AMIA Symposium, pp. 270–274, 2000. View at Scopus
  63. J. M. Beck, W. J. Ma, R. Kiani et al., “Probabilistic population codes for Bayesian decision making,” Neuron, vol. 60, no. 6, pp. 1142–1152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. E. S. O'Neill, N. M. Dluhy, and E. Chin, “Modelling novice clinical reasoning for a computerized decision support system,” Journal of Advanced Nursing, vol. 49, no. 1, pp. 68–77, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Lindgren, “Decision support system supporting clinical reasoning process—an evaluation study in dementia care,” Studies in Health Technology and Informatics, vol. 136, pp. 315–320, 2008.
  66. J. Diaz Guzman and A. Gomez de la Camara, “The diagnostic process in Neurology: from clinical reasoning to assessment of diagnostic tests,” Neurologia, vol. 18, supplement 2, pp. 1–2, 2003.
  67. A. Subramanian, B. Westra, S. Matney et al., “Integrating the nursing management minimum data set into the logical observation identifier names and codes system,” Proceedings/AMIA. Annual Symposium. AMIA Symposium, p. 1148, 2008. View at Scopus
  68. A. W. Forrey, C. J. Mcdonald, G. Demoor et al., “Logical Observation Identifier Names and Codes (LOINC) database: a public use set of codes and names for electronic reporting of clinical laboratory test results,” Clinical Chemistry, vol. 42, no. 1, pp. 81–90, 1996. View at Scopus
  69. C. Friedman, “Semantic text parsing for patient records,” Medical Informatics, vol. 8, pp. 423–448, 2005.
  70. G. Eysenbach and A. R. Jadad, “Evidence-based patient choice and consumer health informatics in the Internet age,” Journal of Medical Internet Research, vol. 3, no. 2, p. E19, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. K. D. Mandl, P. Szolovits, and I. S. Kohane, “Public standards and patients' control: how to keep electronic medical records accessible but private,” British Medical Journal, vol. 322, no. 7281, pp. 283–287, 2001. View at Scopus
  72. S. A. Buckovich, H. E. Rippen, and M. J. Rozen, “Driving toward guiding principles: a goal for privacy, confidentiality, and security of health information,” Journal of the American Medical Informatics Association, vol. 6, no. 2, pp. 122–133, 1999. View at Scopus
  73. D. M. Lopez and B. Blobel, “Enhanced semantic interoperability by profiling health informatics standards,” Methods of Information in Medicine, vol. 48, no. 2, pp. 170–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Baxter, A. Killoran, M. P. Kelly, and E. Goyder, “Synthesizing diverse evidence: the use of primary qualitative data analysis methods and logic models in public health reviews,” Public Health, vol. 124, no. 2, pp. 99–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. G. Q. Hu, K. Q. Rao, and Z. Q. Sun, “Identification of a detailed function list for public health emergency management using three qualitative methods,” Chinese Medical Journal, vol. 120, no. 21, pp. 1908–1913, 2007. View at Scopus
  76. A. Goncalves, A. Tikhonov, A. Brazma, and M. Kapushesky, “A pipeline for RNA-seq data processing and quality assessment,” Bioinformatics, vol. 27, no. 6, pp. 867–869, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. M. H. Rahimi, Bioscope: Actuated Sensor Network for Biological Science, University of Southern California, Los Angeles, Calif, USA, 2005.
  78. A. K. Talukder, S. Gandham, H. A. Prahalad, and N. P. Bhattacharyya, “Cloud-MAQ: the cloud-enabled scalable whole genome reference Assembly application,” in Proceedings of the 7th IEEE and IFIP International Conference on Wireless and Optical Communications Networks (WOCN '10), Colombo, Sri Lanka, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Nguyen, W. Shi, and D. Ruden, “CloudAligner: a fast and full-featured MapReduce based tool for sequence mapping,” BMC Research Notes, vol. 4, article 171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. M. C. Schatz, A. L. Delcher, and S. L. Salzberg, “Assembly of large genomes using second-generation sequencing,” Genome Research, vol. 20, no. 9, pp. 1165–1173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. D. Hong, A. Rhie, S. S. Park, et al., “FX: an RNA-Seq analysis tool on the cloud,” Bioinformatics, vol. 28, no. 5, pp. 721–723, 2012.
  82. C. Sansom, “Up in a cloud?” Nature Biotechnology, vol. 28, no. 1, pp. 13–15, 2010.
  83. B. Langmead, K. D. Hansen, and J. T. Leek, “Cloud-scale RNA-sequencing differential expression analysis with Myrna,” Genome Biology, vol. 11, no. 8, article R83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. X. Feng, R. Grossman, and L. Stein, “PeakRanger: a cloud-enabled peak caller for ChIP-seq data,” BMC Bioinformatics, vol. 12, article 139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Li and S. Zhong, “SeqMapReduce: software and web service for accelerating sequence mapping,” Critical Assessment of Massive Data Anaysis (CAMDA), vol. 2009, 2009.
  86. L. Zhang, S. Gu, Y. Liu, B. Wang, and F. Azuaje, “Gene set analysis in the cloud,” Bioinformatics, vol. 28, no. 2, pp. 294–295, 2012.