About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 679038, 7 pages
http://dx.doi.org/10.1155/2013/679038
Research Article

Development of an Immunochromatographic Test Strip for Detection of Cholera Toxin

1Division of Food Hygiene, Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro, Hokkaido 080-8555, Japan
2R&D Center, Nippon Meat Packers, Inc., 3-3 Midorigahara Tsukuba, Ibaraki 300-2646, Japan
3Division of Clinical Microbiology, Saitama Institute of Public Health, Saitama 338-0824, Japan
4Translational Health Science and Technology Institute, Plot no. 496, Phase III, Udyog Vihar, Gurgaon, Haryana 122016, India

Received 4 September 2013; Accepted 8 October 2013

Academic Editor: Hiroshi Asakura

Copyright © 2013 Eiki Yamasaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Cholera, 2011,” The Weekly Epidemiological Record, vol. 87, no. 31-32, pp. 289–304, 2012.
  2. M. H. Dick, M. Guillerm, F. Moussy, and C. L. Chaignat, “Review of two decades of cholera diagnostics—how far have we really come?” PLOS Neglected Tropical Diseases, vol. 6, no. 10, Article ID e1845, 2012.
  3. Laboratory Methods For the Diagnosis of Vibrio Cholerae, chapter 7, Centers for Disease Control and Prevention, 1999.
  4. W. Yamazaki, K. Seto, M. Taguchi, M. Ishibashi, and K. Inoue, “Sensitive and rapid detection of cholera toxin-producing Vibrio cholerae using a loop-mediated isothermal amplification,” BMC Microbiology, vol. 8, article 94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Palchetti and M. Mascini, “Electroanalytical biosensors and their potential for food pathogen and toxin detection,” Analytical and Bioanalytical Chemistry, vol. 391, no. 2, pp. 455–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. M. Shlyapnikov, E. A. Shlyapnikova, M. A. Simonova et al., “Rapid simultaneous ultrasensitive immunodetection of five bacterial toxins,” Analytical Chemistry, vol. 84, no. 13, pp. 5596–5603, 2012.
  7. K. Yahiro, T. Niidome, T. Hatakeyama et al., “Helicobacter pylori vacuolating cytotoxin binds to the 140-kDa protein in human gastric cancer cell lines, AZ-521 and AGS,” Biochemical and Biophysical Research Communications, vol. 238, no. 2, pp. 629–632, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Uesaka, Y. Otsuka, Z. Lin et al., “Simple method of purification of Escherichia coli heat-labile enterotoxin and cholera toxin using immobilized galactose,” Microbial Pathogenesis, vol. 16, no. 1, pp. 71–76, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Yonekita, T. Fujimura, N. Morishita, T. Matsumoto, and F. Morimatsu, “Simple, rapid, and reliable detection of Escherichia coli O26 using immunochromatography,” Journal of Food Protection, vol. 76, no. 5, pp. 748–754, 2013.
  10. Y. Uesaka, Y. Otsuka, M. Kashida et al., “Detection of cholera toxin by a highly sensitive bead-enzyme linked immunosorbent assay,” Microbiology and Immunology, vol. 36, no. 1, pp. 43–53, 1992. View at Scopus
  11. M. Iwanaga and T. Kuyyakanond, “Large production of cholera toxin by Vibrio cholerae O1 in yeast extract peptone water,” Journal of Clinical Microbiology, vol. 25, no. 12, pp. 2314–2316, 1987. View at Scopus
  12. M. Iwanaga and K. Yamamoto, “New medium for the production of cholera toxin by Vibrio cholerae 01 biotype El Tor,” Journal of Clinical Microbiology, vol. 22, no. 3, pp. 405–408, 1985. View at Scopus
  13. M. Iwanaga, K. Yamamoto, N. Higa, Y. Ichinose, N. Nakasone, and M. Tanabe, “Culture conditions for stimulating cholera toxin production by Vibrio cholerae O1 El Tor,” Microbiology and Immunology, vol. 30, no. 11, pp. 1075–1083, 1986. View at Scopus
  14. J. Sánchez, G. Medina, T. Buhse, J. Holmgren, and G. Soberón-Chavez, “Expression of cholera toxin under non-AKI conditions in Vibrio cholerae el tor induced by increasing the exposed surface of cultures,” Journal of Bacteriology, vol. 186, no. 5, pp. 1355–1361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Ramamurthy, S. K. Bhattacharya, Y. Uesaka et al., “Evaluation of the bead enzyme-linked immunosorbent assay for detection of cholera toxin directly from stool specimens,” Journal of Clinical Microbiology, vol. 30, no. 7, pp. 1783–1786, 1992. View at Scopus
  16. K. Kawatsu, M. Ishibashi, and T. Tsukamoto, “Development and evaluation of a rapid, simple, and sensitive immunochromatographic assay to detect thermostable direct hemolysin produced by Vibrio parahaemolyticus in enrichment cultures of stool specimens,” Journal of Clinical Microbiology, vol. 44, no. 5, pp. 1821–1827, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Arakawa, T. Sawada, K. Takatori, K.-I. Lee, and Y. Hara-Kudo, “Rapid detection of Shiga toxin-producing Escherichia coli in ground beef by an immunochromatography kit in combination with short-term enrichment and treatment for Shiga toxin release,” Biocontrol Science, vol. 16, no. 4, pp. 159–164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. Laboratory Methods For the Diagnosis of Vibrio Cholerae, chapter 4, Centers for Disease Control and Prevention, 1999.
  19. S. H. Lee, D. L. Hava, M. K. Waldor, and A. Camilli, “Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection,” Cell, vol. 99, no. 6, pp. 625–634, 1999. View at Scopus
  20. S. H. Lee, S. M. Butler, and A. Camilli, “Selection for in vivo regulators of bacterial virulence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6889–6894, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. B. H. Abuaita and J. H. Withey, “Bicarbonate induces Vibrio cholerae virulence gene expression by enhancing ToxT activity,” Infection and Immunity, vol. 77, no. 9, pp. 4111–4120, 2009. View at Publisher · View at Google Scholar · View at Scopus