About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 679463, 8 pages
http://dx.doi.org/10.1155/2013/679463
Research Article

Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

1Department of Food Science and Nutrition, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea
2Korea Institute of Science and Technology Information, Seoul 130-741, Republic of Korea
3Department of Center for Aging and Health Care, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea
4Department of Biochemistry, School of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea
5Institute of Natural Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea

Received 23 April 2013; Accepted 11 September 2013

Academic Editor: Kota V. Ramana

Copyright © 2013 Ji Hun Paek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The ethyl acetate (EtOAc) soluble fraction of methanol extracts of Perilla frutescens (P. frutescens) inhibits aldose reductase (AR), the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC) isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR). The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2) (IC50 = 3.16 μM), rosmarinic acid (4) (IC50 = 2.77 μM), luteolin (5) (IC50 = 6.34 μM), and methyl rosmarinic acid (6) (IC50 = 4.03 μM).