About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 679680, 8 pages
http://dx.doi.org/10.1155/2013/679680
Review Article

A Honey Trap for the Treatment of Acne: Manipulating the Follicular Microenvironment to Control Propionibacterium acnes

1Department of Dermatology, Harrogate and District NHS Foundation Trust, Lancaster Park Road, Harrogate HG2 7SX, UK
2Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK

Received 11 January 2013; Accepted 12 April 2013

Academic Editor: Peter A. Lambert

Copyright © 2013 E. Anne Eady et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Dessinioti and A. D. Katsambas, “The role of Propionibacterium acnes in acne pathogenesis: facts and controversies,” Clinics in Dermatology, vol. 28, no. 1, pp. 2–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Ingham, “The immunology of Propionibacterium acnes and acne,” Current Opinion in Infectious Diseases, vol. 12, no. 3, pp. 191–197, 1999. View at Scopus
  3. B. Shaheen and M. Gonzalez, “A microbial aetiology of acne: what is the evidence?” British Journal of Dermatology, vol. 165, pp. 474–485, 2011.
  4. B. Shaheen and M. Gonzalez, “Acne sans P. acnes,” Journal of the European Academy of Dermatology and Venereology, vol. 27, pp. 1–10, 2013.
  5. H. C. Williams, R. P. Dellavalle, and S. Garner, “Acne vulgaris,” The Lancet, vol. 379, pp. 361–372, 2012.
  6. M. Ozolins, E. Anne Eady, P. A. J. Avery et al., “Comparison of five antimicrobial regimens for treatment of mild to moderate inflammatory facial acne vulgaris in the community: randomised controlled trial,” The Lancet, vol. 364, no. 9452, pp. 2188–2195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Tzellos, V. Zampeli, E. Makrantonaki, and C. C. Zouboulis, “Treating acne with antibiotic-resistant bacterial colonization,” Expert Opinion on Pharmacotherapy, vol. 12, no. 8, pp. 1233–1247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. F. L. Hamilton, J. Car, C. Lyons, M. Car, A. Layton, and A. Majeed, “Laser and other light therapies for the treatment of acne vulgaris: systematic review,” British Journal of Dermatology, vol. 160, no. 6, pp. 1273–1285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. N. Burkhart and C. G. Burkhart, “Microbiology's principle of biofilms as a major factor in the pathogenesis of acne vulgaris,” International Journal of Dermatology, vol. 42, no. 12, pp. 925–927, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. R. L. Modlin, “Innate immunity: ignored for decades, but not forgotten,” Journal of Investigative Dermatology, vol. 132, pp. 882–886, 2012.
  11. M. H. Schmid-Wendtner and H. C. Korting, “The pH of the skin surface and its impact on the barrier function,” Skin Pharmacology and Physiology, vol. 19, no. 6, pp. 296–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. J. Leyden, R. Stewart, and A. M. Kligman, “Updated in vivo methods for evaluating topical antimicrobial agents on human skin,” Journal of Investigative Dermatology, vol. 72, no. 4, pp. 165–170, 1979. View at Scopus
  13. D. Y. Lee, C. M. Huang, T. Nakatsuji et al., “Histone H4 is a major component of the antimicrobial action of human sebocytes,” Journal of Investigative Dermatology, vol. 129, no. 10, pp. 2489–2496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Nakatsuji, M. C. Kao, L. Zhang, C. C. Zouboulis, R. L. Gallo, and C. M. Huang, “Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating β-defensin-2 expression,” Journal of Investigative Dermatology, vol. 130, no. 4, pp. 985–994, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Schittek, M. Paulmann, I. Senyürek, and H. Steffen, “The role of antimicrobial peptides in human skin and in skin infectious diseases,” Infectious Disorders, vol. 8, no. 3, pp. 135–143, 2008. View at Scopus
  16. K. J. McGinley, G. F. Webster, M. R. Ruggieri, and J. J. Leyden, “Regional variations in density of cutaneous propionibacteria: correlation of Propionibacterium acnes populations with sebaceous secretion,” Journal of Clinical Microbiology, vol. 12, no. 5, pp. 672–675, 1980. View at Scopus
  17. M. Bek-Thomsen, H. B. Lomholt, and M. Kilian, “Acne is not associated with yet-uncultured bacteria,” Journal of Clinical Microbiology, vol. 46, no. 10, pp. 3355–3360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. P. Leeming, K. T. Holland, and W. J. Cunliffe, “The microbial ecology of pilosebaceous units isolated from human skin,” Journal of General Microbiology, vol. 130, no. 4, pp. 803–807, 1984. View at Scopus
  19. H. Falentin, S. M. Deutsch, G. Jan et al., “The complete genome of Propionibacterium freudenreichii CIRM-BIA1T, a hardy actinobacterium with food and probiotic applications,” PLoS ONE, vol. 5, no. 7, Article ID e11748, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Eberhardt, “The regulation of sebum excretion in man,” Archives of Dermatological Research, vol. 251, no. 2, pp. 155–164, 1974. View at Scopus
  21. G. W. Lu, S. Valiveti, J. Spence et al., “Comparison of artificial sebum with human and hamster sebum samples,” International Journal of Pharmaceutics, vol. 367, no. 1-2, pp. 37–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. W. Fluhr, M. Mao-Qiang, B. E. Brown et al., “Glycerol regulates stratum corneum hydration in sebaceous gland deficient (asebia) mice,” Journal of Investigative Dermatology, vol. 120, no. 5, pp. 728–737, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Rebello and J. L. McLeod Hawk, “Skin surface glycerol levels in acne vulgaris,” Journal of Investigative Dermatology, vol. 70, no. 6, pp. 352–354, 1978. View at Scopus
  24. P. W. Wertz, “Human synthetic sebum formulation and stability under conditions of use and storage,” International Journal of Cosmetic Science, vol. 31, no. 1, pp. 21–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. H. H. Wolff, G. Plewig, and O. Braun Falco, “Ultrastructure of human sebaceous follicles and comedones following treatment with vitamin A acid,” Acta Dermato-Venereologica, vol. 55, no. 74, pp. 99–110, 1975. View at Scopus
  26. H. Brüggemann, A. Henne, F. Hoster et al., “The complete genome sequence of Propionibacterium acnes, a commensal of human skin,” Science, vol. 305, no. 5684, pp. 671–673, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. W. H. Wilborn, B. M. Hyde, and L. F. Montes, Scanning Electron Microscopy of Normal and Abnormal Human Skin, VCH Publishers, 1985.
  28. K. Hoyberg, “Environmental scanning electron microscopy of personal and household products,” Scanning, vol. 19, no. 2, pp. 109–113, 1997. View at Scopus
  29. K. S. Kim, M. K. Shin, J. H. Kim, M. H. Kim, C. R. Haw, and H. K. Park, “Effects of atopic dermatitis on the morphology and water content of scalp hair,” Microscopy Research and Technique, vol. 75, pp. 620–625, 2011.
  30. K. T. Holland, J. Greenman, and W. J. Cunliffe, “Growth of cutaneous propionibacteria on synthetic medium: growth yields and exoenzyme production,” Journal of Applied Bacteriology, vol. 47, no. 3, pp. 383–394, 1979. View at Scopus
  31. D. A. Ferguson and C. S. Cummins, “Nutritional requirements of anaerobic coryneforms,” Journal of Bacteriology, vol. 135, no. 3, pp. 858–867, 1978. View at Scopus
  32. M. Verschoore, M. Poncet, B. Krebs, and J. P. Ortonne, “Circadian variations in the number of actively secreting sebaceous follicles and androgen circadian rhythms,” Chronobiology International, vol. 10, no. 5, pp. 349–359, 1993. View at Scopus
  33. G. E. Pierard, “Rate and topography of follicular sebum excretion,” Dermatologica, vol. 175, no. 6, pp. 280–283, 1987. View at Scopus
  34. P. A. Hoskisson and G. Hobbs, “Continuous culture—making a comeback?” Microbiology, vol. 151, no. 10, pp. 3153–3159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Otberg, H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, and J. Lademann, “Variations of hair follicle size and distribution in different body sites,” Journal of Investigative Dermatology, vol. 122, no. 1, pp. 14–19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. E. A. Eady, J. H. Cove, J. Blake, K. T. Holland, and W. J. Cunliffe, “Recalcitrant acne vulgaris. Clinical, biochemical and microbiological investigation of patients not responding to antibiotic treatment,” British Journal of Dermatology, vol. 118, no. 3, pp. 415–423, 1988. View at Scopus
  37. G. E. Pierard, “Follicule to follicule heterogeneity of sebum excretion,” Dermatologica, vol. 173, no. 2, pp. 61–65, 1986. View at Scopus
  38. J. H. Cove, K. T. Holland, and W. J. Cunliffe, “Effects of oxygen concentration on biomass production, maximum specific growth rate and extracellular enzyme production by three species of cutaneous propionibacteria grown in continuous culture,” Journal of General Microbiology, vol. 129, no. 11, pp. 3327–3334, 1983. View at Scopus
  39. J. J. Leyden, K. McGinley, O. H. Mills, and A. M. Kligman, “Topical antibiotics and topical antimicrobial agents in acne therapy,” Acta Dermato-Venereologica, supplement 89, pp. 75–82, 1980. View at Scopus
  40. W. D. Grant, “Life at low water activity,” Philosophical Transactions of the Royal Society of London B, vol. 359, pp. 1249–1266, 2004. View at Publisher · View at Google Scholar
  41. B. Kempf and E. Bremer, “Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments,” Archives of Microbiology, vol. 170, no. 5, pp. 319–330, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Krämer, “Bacterial stimulus perception and signal transduction: response to osmotic stress,” The Chemical Record, vol. 10, pp. 217–229, 2010.
  43. H. Eberhardt, “Comedo formation in acne,” Archives of Dermatological Research, vol. 254, no. 3, pp. 257–262, 1975. View at Scopus
  44. M. Williams and W. J. Cunliffe, “Explanation for premenstrual acne,” The Lancet, vol. 2, no. 7837, pp. 1055–1057, 1973. View at Scopus
  45. A. Yamamoto, K. Takenouchi, and M. Ito, “Impaired water barrier function in acne vulgaris,” Archives of Dermatological Research, vol. 287, no. 2, pp. 214–218, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. O. H. Mills and A. M. Kligman, “A human model for assessing comedogenic substances,” Archives of Dermatology, vol. 118, no. 11, pp. 903–905, 1982. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Teichmann, N. Otberg, U. Jacobi, W. Sterry, and J. Lademann, “Follicular penetration: development of a method to block the follicles selectively against the penetration of topically applied substances,” Skin Pharmacology and Physiology, vol. 19, no. 4, pp. 216–223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Farahmand, L. Tien, X. Hui, and H. I. Maibach, “Measuring transepidermal water loss: a comparative in vivo study of condenser-chamber, unventilated-chamber and open-chamber systems,” Skin Research and Technology, vol. 15, no. 4, pp. 392–398, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Shahidzadeh, D. Bonn, J. Meunier, and A. Mavon, “Wetting of biological lipids on aqueous substrates,” Physical Review E, vol. 64, no. 2, Article ID 021911, 2001. View at Scopus
  50. L. S. Dorobantu, A. K. C. Yeung, J. M. Foght, and M. R. Gray, “Stabilization of oil-water emulsions by hydrophobic bacteria,” Applied and Environmental Microbiology, vol. 70, no. 10, pp. 6333–6336, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Toyoda and M. Morohashi, “Pathogenesis of acne,” Medical Electron Microscopy, vol. 34, no. 1, pp. 29–40, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Plewig and A. M. kligman, Acne. Morphogenesis and Treatment, Springer, Berlin, Germany, 1975.
  53. M. Schué, D. Maurin, R. Dhouib et al., “Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function,” FASEB Journal, vol. 24, no. 6, pp. 1893–1903, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Brzuszkiewicz, J. Weiner, A. Wollherr et al., “Comparative genomics and transcriptomics of Propionibacterium acnes,” PLoS ONE, vol. 6, no. 6, Article ID e21581, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. M. J. Seufferheld, H. M. Alvarez, and M. E. Farias, “Role of polyphosphates in microbial adaptation to extreme environments,” Applied and Environmental Microbiology, vol. 74, no. 19, pp. 5867–5874, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. A. C. Jahns, B. Lundskog, R. Ganceviciene, et al., “An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case-control study,” British Journal of Dermatology, vol. 167, pp. 50–58, 2012.
  57. T. Coenye, K. Honraet, B. Rossel, and H. J. Nelis, “Biofilms in skin infections: Propionibacterium acnes and acne vulgaris,” Infectious Disorders, vol. 8, no. 3, pp. 156–159, 2008. View at Scopus
  58. M. Sörensen, T. N. Mak, R. Hurwitz et al., “Mutagenesis of Propionibacterium acnes and analysis of two CAMP factor knock-out mutants,” Journal of Microbiological Methods, vol. 83, no. 2, pp. 211–216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Graf, S. Anzali, J. Buenger, F. Pfluecker, and H. Driller, “The multifunctional role of ectoine as a natural cell protectant,” Clinics in Dermatology, vol. 26, no. 4, pp. 326–333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Ayoub, N. Ahmed, N. Kalaji et al., “Study of the effect of formulation parameters/variables to control the nanoencapsulation of hydrophilic drug via double emulsion technique,” Journal of Biomedical Nanotechnology, vol. 7, no. 2, pp. 255–262, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Kircik and A. Friedman, “Optimizing acne therapy with unique vehicles,” Journal of Drugs in Dermatology, vol. 9, supplement, ODAC Conference Part 1, no. 5, pp. s53–s57, 2010.
  62. E. Milohanic, R. Jonquières, P. Cossart, P. Berche, and J. L. Gaillard, “The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor,” Molecular Microbiology, vol. 39, no. 5, pp. 1212–1224, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Holland, T. N. Mak, U. Zimny-Arndt et al., “Proteomic identification of secreted proteins of Propionibacterium acnes,” BMC Microbiology, vol. 10, article 230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Nakatsuji, D. C. C. Tang, L. Zhang, R. L. Gallo, and C. M. Huang, “Propionibacterium acnes camp factor and host acid sphingomyelinase contribute to bacterial virulence: potential targets for inflammatory acne treatment,” PLoS ONE, vol. 6, no. 4, Article ID e14797, 2011. View at Publisher · View at Google Scholar · View at Scopus