About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 680605, 12 pages
http://dx.doi.org/10.1155/2013/680605
Research Article

Antagonistic Activity of Lactobacillus Isolates against Salmonella typhi In Vitro

1Department of Microbiology & Immunology, Faculty of Pharmacy, Modern Sciences and Arts University, Cairo 12611, Egypt
2Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun Street, Abbassia, Cairo 11566, Egypt
3Department of Pharmaceutical Microbiology, College of Pharmacy, Taif University, Saudi Arabia

Received 16 April 2013; Revised 16 July 2013; Accepted 13 August 2013

Academic Editor: Stanley Brul

Copyright © 2013 Amira Abdel-Daim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Srivastava and P. Aggarwal, “Multidrug resistant Salmonella typhi in Delhi,” Indian Journal of Medical Microbiology, vol. 12, pp. 102–105, 1994.
  2. C. M. Parry, T. T. Hein, G. Dougan, N. J. White, and J. J. Farrar, “Typhoid fever,” The New England Journal of Medicine, vol. 347, no. 22, pp. 1770–1782, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. P. Borriello, W. P. Hammes, W. Holzapfel et al., “Safety of probiotics that contain lactobacilli or bifidobacteria,” Clinical Infectious Diseases, vol. 36, no. 6, pp. 775–780, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Ahrné, S. Nobaek, B. Jeppsson, I. Adlerberth, A. E. Wold, and G. Molin, “The normal Lactobacillus flora of healthy human rectal and oral mucosa,” Journal of Applied Microbiology, vol. 85, no. 1, pp. 88–94, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Andreu, A. E. Stapleton, C. L. Fennell, S. L. Hillier, and W. E. Stamm, “Hemagglutination, adherence, and surface properties of vaginal Lactobacillus species,” Journal of Infectious Diseases, vol. 171, no. 5, pp. 1237–1243, 1995. View at Scopus
  6. A. Giorgi, S. Torriani, F. Dellaglio, G. Bo, E. Stola, and L. Bernuzzi, “Identification of vaginal lactobacilli from asymptomatic women,” Microbiologica, vol. 10, no. 4, pp. 377–384, 1987. View at Scopus
  7. W. H. Holzapfel, P. Haberer, J. Snel, U. Schillinger, and J. H. Huis in't Veld, “Overview of gut flora and probiotics,” International Journal of Food Microbiology, vol. 41, no. 2, pp. 85–101, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. G. W. Tannock, “Analysis of the intestinal microflora: a renaissance,” Antonie van Leeuwenhoek, vol. 76, no. 1–4, pp. 265–278, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. I. M. Helander, A. von Wright, and T.-M. Mattila-Sandholm, “Potential of lactic acid bacteria and novel antimicrobials against gram-negative bacteria,” Trends in Food Science and Technology, vol. 8, no. 5, pp. 146–150, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Magnusson, K. Ström, S. Roos, J. Sjögren, and J. Schnürer, “Broad and complex antifungal activity among environmental isolates of lactic acid bacteria,” FEMS Microbiology Letters, vol. 219, no. 1, pp. 129–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. L. Servin, “Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens,” FEMS Microbiology Reviews, vol. 28, no. 4, pp. 405–440, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Valerio, P. Lavermicocca, M. Pascale, and A. Visconti, “Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation,” FEMS Microbiology Letters, vol. 233, no. 2, pp. 289–295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Arvola, K. Laiho, S. Torkkeli et al., “Prophylactic Lactobacillus GG reduces antibiotic-associated diarrhea in children with respiratory infections: a randomized study,” Pediatrics, vol. 104, no. 5, article e64, 1999. View at Scopus
  14. R. B. Canani, P. Cirillo, G. Terrin et al., “Probiotics for treatment of acute diarrhoea in children: randomised clinical trial of five different preparations,” British Medical Journal, vol. 335, no. 7615, pp. 340–342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Reid, J. Jass, M. T. Sebulsky, and J. K. McCormick, “Potential uses of probiotics in clinical practice,” Clinical Microbiology Reviews, vol. 16, no. 4, pp. 658–672, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Abdel-Daim, M. Ashor, N. Hassouna, M. Hafez, and M. Aboulwafa, “Screening of Lactobacillus isolates for their probiotic potential,” Archives of Clinical Microbiology, vol. 3, no. 5, 2012.
  17. M.-C. Plotkowski, A. M. Saliba, S. H. M. Pereira, M. P. Cervante, and O. Bajolet-Laudinat, “Pseudomonas aeruginosa selective adherence to and entry into human endothelial cells,” Infection and Immunity, vol. 62, no. 12, pp. 5456–5463, 1994. View at Scopus
  18. M. A. Golowczyc, P. Mobili, G. L. Garrote, A. G. Abraham, and G. L. de Antoni, “Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis,” International Journal of Food Microbiology, vol. 118, no. 3, pp. 264–273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. J. Fleiszig, T. S. Zaidi, M. J. Preston, M. Grout, D. J. Evans, and G. B. Pier, “Relationship between cytotoxicity and corneal epithelial cell invasion by clinical isolates of Pseudomonas aeruginosa,” Infection and Immunity, vol. 64, no. 6, pp. 2288–2294, 1996. View at Scopus
  20. U. Schillinger and F. K. Lücke, “Antibacterial activity of Lactobacillus sake isolated from meat,” Applied and Environmental Microbiology, vol. 55, no. 8, pp. 1901–1906, 1989. View at Scopus
  21. M.-H. Coconnier, V. Liévin, M.-F. Bernet-Camard, S. Hudault, and A. L. Servin, “Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 5, pp. 1046–1052, 1997. View at Scopus
  22. L. Drago, M. R. Gismondo, A. Lombardi, C. De Haën, and L. Gozzini, “Inhibition of in vitro growth of enteropathogens by new Lactobacillus isolates of human intestinal origin,” FEMS Microbiology Letters, vol. 153, no. 2, pp. 455–463, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. D. I. Henry, “Broth microdilution MIC test,” in Clinical Microbiology Procedure Handbook, D. I. Henry, Ed., vol. 2, ASM Press, Washington, DC, USA, 2007.
  24. J. M. Andrews, “Determination of minimum inhibitory concentrations,” Journal of Antimicrobial Chemotherapy, vol. 48, no. 1, pp. 5–16, 2001. View at Scopus
  25. S. Mayrhofer, K. J. Domig, C. Mair, U. Zitz, G. Huys, and W. Kneifel, “Comparison of broth microdilution, Etest, and agar disk diffusion methods for antimicrobial susceptibility testing of Lactobacillus acidophilus group members,” Applied and Environmental Microbiology, vol. 74, no. 12, pp. 3745–3748, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Talwalkar, K. Kailasapathy, P. Peiris, and R. Arumugaswamy, “Application of RBGR—a simple way for screening of oxygen tolerance in probiotic bacteria,” International Journal of Food Microbiology, vol. 71, no. 2-3, pp. 245–248, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. A. C. Ouwehand, “Antimicrobial components from lactic acid bacteria,” in Lactic Acid Bacteria Microbiology and Functional Aspects, S. Salminen and A. V. Wright, Eds., pp. 139–159, Dekker, New York, NY, USA, 1998.
  28. L. de Vuyst and E. J. Vandamme, “Antimicrobial potential of lactic acid bacteria,” in Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications, L. de Vuyst and E. J. Vandamme, Eds., pp. 91–142, Blackie, London, UK, 1994.
  29. P. Hütt, J. Shchepetova, K. Lõivukene, T. Kullisaar, and M. Mikelsaar, “Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens,” Journal of Applied Microbiology, vol. 100, no. 6, pp. 1324–1332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. C. K. Lin, H. C. Tsai, P. P. Lin, H. Y. Tsen, and C. C. Tsai, “Lactobacillus acidophilus LAP5 able to inhibit the Salmonella choleraesuis invasion to the human Caco-2 epithelial cell,” Anaerobe, vol. 14, no. 5, pp. 251–255, 2008. View at Publisher · View at Google Scholar
  31. H. Annuk, J. Shchepetova, T. Kullisaar, E. Songisepp, M. Zilmer, and M. Mikelsaar, “Characterization of intestinal lactobacilli as putative probiotic candidates,” Journal of Applied Microbiology, vol. 94, no. 3, pp. 403–412, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. C. Ouwehand and S. Vesterlund, “Antimicrobial components from lactic acid bacteria,” in Lactic Acid Bacteria: Microbiological and Functional Aspects, S. Salminen, A. V. Wright, and A. C. Ouwehand, Eds., pp. 375–395, Dekker, New York, NY, USA, 3rd edition, 2004.
  33. S. C. J. de Keersmaecker, T. L. A. Verhoeven, J. Desair, K. Marchal, J. Vanderleyden, and I. Nagy, “Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid,” FEMS Microbiology Letters, vol. 259, no. 1, pp. 89–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Fayol-Messaoudi, C. N. Berger, M.-H. Coconnier-Polter, V. Liévin-Le Moal, and A. L. Servin, “pH-, lactic acid-, and non-lactic acid-dependent activities of probiotic lactobacilli against Salmonella enterica serovar typhimurium,” Applied and Environmental Microbiology, vol. 71, no. 10, pp. 6008–6013, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. I. Cook and J. H. Sellin, “Review article: short chain fatty acids in health and disease,” Alimentary Pharmacology and Therapeutics, vol. 12, no. 6, pp. 499–507, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Millette, F. M. Luquet, and M. Lacroix, “In vitro growth control of selected pathogens by Lactobacillus acidophilus- and Lactobacillus casei-fermented milk,” Letters in Applied Microbiology, vol. 44, no. 3, pp. 314–319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Silva, N. V. Jacobus, C. Deneke, and S. L. Gorbach, “Antimicrobial substance from a human Lactobacillus strain,” Antimicrobial Agents and Chemotherapy, vol. 31, no. 8, pp. 1231–1233, 1987. View at Scopus
  38. M. Rammelsberg and F. Radler, “Antibacterial polypeptides of Lactobacillus species,” Journal of Applied Bacteriology, vol. 69, no. 2, pp. 177–184, 1990. View at Scopus
  39. Y.-K. Lee, K.-Y. Puong, A. C. Ouwehand, and S. Salminen, “Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli,” Journal of Medical Microbiology, vol. 52, no. 10, pp. 925–930, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. M.-F. Bernet-Camard, V. Liévin, D. Brassart, J.-R. Neeser, A. L. Servin, and S. Hudault, “The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial subtance(s) active in vitro and in vivo,” Applied and Environmental Microbiology, vol. 63, no. 7, pp. 2747–2753, 1997. View at Scopus
  41. M.-H. Coconnier, V. Lievin, M. Lorrot, and A. L. Servin, “Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar Typhimurium infecting human enterocyte-like Caco-2/TC-7 cells,” Applied and Environmental Microbiology, vol. 66, no. 3, pp. 1152–1157, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Lievin, I. Peiffer, S. Hudault et al., “Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity,” Gut, vol. 47, no. 5, pp. 646–652, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. V. L.-L. Moal, R. Amsellem, A. L. Servin, and M.-H. Coconnier, “Lactobacillus acidophilus (strain LB) from the resident adult human gastrointestinal microflora exerts activity against brush border damage promoted by a diarrhoeagenic Escherichia coli in human enterocyte-like cells,” Gut, vol. 50, no. 6, pp. 803–811, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. P. A. Maragkoudakis, G. Zoumpopouloua, C. Miarisa, G. Kalantzopoulosa, B. Potb, and E. Tsakalidoua, “Probiotic potential of Lactobacillus strains isolated from dairy products,” International Dairy Journal, vol. 16, no. 3, pp. 189–199, 2006. View at Publisher · View at Google Scholar
  45. S. A. Carlson and B. D. Jones, “Inhibition of Salmonella typhimurium invasion by host cell expression of secreted bacterial invasion proteins,” Infection and Immunity, vol. 66, no. 11, pp. 5295–5300, 1998. View at Scopus
  46. M.-H. Coconnier-Polter, V. Liévin-Le Moal, and A. L. Servin, “A Lactobacillus acidophilus strain of human gastrointestinal microbiota origin elicits killing of enterovirulent Salmonella enterica serovar typhimurium by triggering lethal bacterial membrane damage,” Applied and Environmental Microbiology, vol. 71, no. 10, pp. 6115–6120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Makras, V. Triantafyllou, D. Fayol-Messaoudi et al., “Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds,” Research in Microbiology, vol. 157, no. 3, pp. 241–247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Parente and A. Ricciardi, “Production, recovery and purification of bacteriocins from lactic acid bacteria,” Applied Microbiology and Biotechnology, vol. 52, no. 5, pp. 628–638, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Mastromarino, P. Brigidi, S. Macchia et al., “Characterization and selection of vaginal Lactobacillus strains for the preparation of vaginal tablets,” Journal of Applied Microbiology, vol. 93, no. 5, pp. 884–893, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. K. M. Burkholder and A. K. Bhunia, “Salmonella enterica serovar Typhimurium adhesion and cytotoxicity during epithelial cell stress is reduced by Lactobacillus rhamnosus GG,” Gut Pathogens, vol. 1, article 14, 2009.
  51. A. Talwalkar and K. Kailasapathy, “Metabolic and biochemical responses of probiotic bacteria to oxygen,” Journal of Dairy Science, vol. 86, no. 8, pp. 2537–2546, 2003. View at Scopus
  52. J. C. Brunner, H. Spillman, and Z. Puhan, “Metabolism and survival of bifidobacteria in fermented milk during cold storage,” Milchwirtschaftliche-Forschung, vol. 22, pp. 19–25, 1993.
  53. F. A. M. Klaver, F. Kingma, and A. H. Weerkamp, “Growth and survival of bifidobacteria in milk,” Netherlands Milk and Dairy Journal, vol. 47, no. 3-4, pp. 151–164, 1993. View at Scopus
  54. R. I. Dave and N. P. Shah, “Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures,” International Dairy Journal, vol. 7, no. 6-7, pp. 435–443, 1997. View at Publisher · View at Google Scholar · View at Scopus
  55. F. S. Archibald and I. Fridovich, “Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria,” Journal of Bacteriology, vol. 146, no. 3, pp. 928–936, 1981. View at Scopus
  56. W. S. Kim, L. Perl, J. H. Park, J. E. Tandianus, and N. W. Dunn, “Assessment of stress response of the probiotic Lactobacillus acidophilus,” Current Microbiology, vol. 43, no. 5, pp. 346–350, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. M. C. de Vries, E. E. Vaughan, M. Kleerebezem, and W. M. de Vos, “Lactobacillus plantarum—survival, functional and potential probiotic properties in the human intestinal tract,” International Dairy Journal, vol. 16, no. 9, pp. 1018–1028, 2006. View at Publisher · View at Google Scholar · View at Scopus