About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 681027, 10 pages
http://dx.doi.org/10.1155/2013/681027
Research Article

Preventive Inositol Hexaphosphate Extracted from Rice Bran Inhibits Colorectal Cancer through Involvement of Wnt/β-Catenin and COX-2 Pathways

1Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
4Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
5Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Received 4 June 2013; Revised 4 August 2013; Accepted 29 August 2013

Academic Editor: Mahmood Ameen Abdulla

Copyright © 2013 Nurul Husna Shafie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Shamsuddin, I. Vucenik, and K. E. Cole, “IP6: a novel anti-cancer agent,” Life Sciences, vol. 61, no. 4, pp. 343–354, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. U. Schlemmer, W. Frølich, R. M. Prieto, and F. Grases, “Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis,” Molecular Nutrition and Food Research, vol. 53, no. 2, pp. 330–375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Vucenik and A. M. Shamsuddin, “Protection against cancer by dietary IP6 and inositol,” Nutrition and Cancer, vol. 55, no. 2, pp. 109–125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. E. Norhaizan, S. K. Ng, M. S. Norashareena, and M. A. Abdah, “Antioxidant and cytotoxicity effect of rice bran phytic acid as an anticancer agent on ovarian, breast and liver cancer cell lines,” Malaysian Journal of Nutrition, vol. 17, no. 3, pp. 367–375, 2011.
  5. R. J. Jariwalla, “Rice-bran products: phytonutrients with potential applications in preventive and clinical medicine,” Drugs under Experimental and Clinical Research, vol. 27, no. 1, pp. 17–26, 2001. View at Scopus
  6. A. Matejuk and A. Shamsuddin, “IP6 in cancer therapy: past, present and future,” Current Cancer Therapy Reviews, vol. 6, no. 1, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. P. Singh, G. Sharma, G. U. Mailikarjuna, S. Dhanalakshmi, C. Agarwal, and R. Agarwal, “In vivo suppression of hormone-refractory prostate cancer growth by inositol hexaphosphate: induction of insulin-like growth factor binding protein-3 and inhibition of vascular endothelial growth factor,” Clinical Cancer Research, vol. 10, no. 1 I, pp. 244–250, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. P. Singh and R. Agarwal, “Prostate cancer and inositol hexaphosphate: efficacy and mechanisms,” Anticancer Research, vol. 25, no. 4, pp. 2891–2904, 2005. View at Scopus
  9. S. Norazalina, M. E. Norhaizan, I. Hairuszah, and M. S. Norashareena, “Anticarcinogenic efficacy of phytic acid extracted from rice bran on azoxymethane-induced colon carcinogenesis in rats,” Experimental and Toxicologic Pathology, vol. 62, no. 3, pp. 259–268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. E. R. Fearon and B. Vogelstein, “A genetic model for colorectal tumorigenesis,” Cell, vol. 61, no. 5, pp. 759–767, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. K. L. Krzystyniak, “Current strategies for anticancer chemoprevention and chemoprotection,” Acta Poloniae Pharmaceutica, vol. 59, no. 6, pp. 473–478, 2002. View at Scopus
  13. S. Rajamanickam and R. Agarwal, “Natural products and colon cancer: current status and future prospects,” Drug Development Research, vol. 69, no. 7, pp. 460–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Spychalski, L. Dziki, and A. Dziki, “Chemoprevention of colorectal cancer: a new target needed?” Colorectal Disease, vol. 9, no. 5, pp. 397–401, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. H. Luu, R. Zhang, R. C. Haydon et al., “Wnt/β-catenin signaling pathway as novel cancer drug targets,” Current Cancer Drug Targets, vol. 4, no. 8, pp. 653–671, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. L. Kargman, G. P. O'Neill, P. J. Vickers, J. F. Evans, J. A. Mancini, and S. Jothy, “Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer,” Cancer Research, vol. 55, no. 12, pp. 2556–2559, 1995. View at Scopus
  17. H. Sano, Y. Kawahito, R. L. Wilder et al., “Expression of cyclooxygenase-1 and -2 in human colorectal cancer,” Cancer Research, vol. 55, no. 17, pp. 3785–3789, 1995. View at Scopus
  18. B. S. Reddy, Y. Hirose, L. A. Cohen, B. Simi, I. Cooma, and C. V. Rao, “Preventive potential of wheat bran fractions against experimental colon carcinogenesis: implications for human colon cancer prevention,” Cancer Research, vol. 60, no. 17, pp. 4792–4797, 2000. View at Scopus
  19. G. Lala, M. Malik, C. Zhao et al., “Anthocyanin-rich extracts inhibit multiple biomarkers of colon cancer in rats,” Nutrition and Cancer, vol. 54, no. 1, pp. 84–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. S. Bakhle, “Cox-2 and cancer: a new approach to an old problem,” British Journal of Pharmacology, vol. 134, no. 6, pp. 1137–1150, 2001. View at Scopus
  21. F. M. Ramezanzadeh, R. M. Rao, W. Prinyawiwatkul, W. E. Marshall, and M. Windhauser, “Effects of microwave heat, packaging, and storage temperature on fatty acid and proximate compositions in rice bran,” Journal of Agricultural and Food Chemistry, vol. 48, no. 2, pp. 464–467, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Zullaikah, E. Melwita, and Y. H. Ju, “Isolation of oryzanol from crude rice bran oil,” Bioresource Technology, vol. 100, no. 1, pp. 299–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Norazalina, M. E. Norhaizan, I. Hairuszah, and S. Nurul Husna, “Optimization of optimum condition for phytic acid extraction from rice bran,” African Journal of Plant Sciences, vol. 5, pp. 168–175, 2011.
  24. A. L. Camire and F. M. Clydesdale, “Analysis of phytic acid in foods by HPLC,” Journal of Food Sciences, vol. 47, pp. 575–578, 1982.
  25. R. P. Bird, “Aberrant crypt foci to study cancer preventive agents in the colon,” in Tumor Marker Protocol, M. Hanaucek and Z. Walaszek, Eds., pp. 465–474, Human Press, New Jersey, NJ, USA, 1998.
  26. R. P. Singh, G. Sharma, G. U. Mailikarjuna, S. Dhanalakshmi, C. Agarwal, and R. Agarwal, “In vivo suppression of hormone-refractory prostate cancer growth by inositol hexaphosphate: induction of insulin-like growth factor binding protein-3 and inhibition of vascular endothelial growth factor,” Clinical Cancer Research, vol. 10, no. 1 I, pp. 244–250, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. S. Cappell, “From colonic polyps to colon cancer: pathophysiology, clinical presentation, screening and colonoscopic therapy,” Minerva Gastroenterologica e Dietologica, vol. 53, no. 4, pp. 351–373, 2007. View at Scopus
  28. J. Jen, S. M. Powell, N. Papadopoulos et al., “Molecular determinations on aberrant crypt foci from human colons,” Cancer Research, vol. 54, pp. 5527–5530, 1994.
  29. R. B. Alfin-Slater and D. Kritchevsky, Cancer and Nutrition, Plenum Press, New York, NY, USA.
  30. A. Ullah and A. M. Shamsuddin, “Dose-dependent inhibition of large intestinal cancer by inositol hexaphosphate in F344 rats,” Carcinogenesis, vol. 11, no. 12, pp. 2219–2222, 1990. View at Scopus
  31. T. P. Pretlow, M. A. O'Riordan, T. G. Pretlow, and T. A. Stellato, “Aberrant crypts in human colonic mucosa: putative preneoplastic lesions,” Journal of Cellular Biochemistry Supplement, vol. 16, pp. 55–62, 1992. View at Scopus
  32. S. Nurul-Husna, M. E. Norhaizan, I. Hairuszah, M. A. Abdah, S. Norazalina, and I. Norsharina, “Rice bran phytic acid (IP6) induces growth inhibition, cell cycle arrest and apoptosis on human colorectal adenocarcinoma cells,” Journal of Medicinal Plant Research, vol. 4, no. 21, pp. 2283–2289, 2010. View at Scopus
  33. S. Norazalina, M. E. Norhaizan, I. Hairuszah, A. R. Sabariah, S. N. Husna, and I. Norsharina, “Antiproliferation and apoptosis induction of phytic acid in hepatocellular carcinoma (HEPG2) cell lines,” African Journal of Biotechnology, vol. 10, no. 73, pp. 16646–16653, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. S. M. Powell, N. Zilz, Y. Beazer-Barclay et al., “APC mutations occur early during colorectal tumorigenesis,” Nature, vol. 359, no. 6392, pp. 235–237, 1992. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Polakis, “The adenomatous polyposis coil (APC) tumor suppressor,” Biochimica et Biophysica Acta, vol. 1332, no. 3, pp. F127–F147, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Takahashi, K. Fukuda, T. Sugimura, and K. Wakabayashi, “β-catenin is frequently mutated and demonstrates altered cellular location in azoxymethane-induced rat colon tumors,” Cancer Research, vol. 58, no. 1, pp. 42–46, 1998. View at Scopus
  37. H. Aberle, A. Bauer, J. Stappert, A. Kispert, and R. Kemler, “β-catenin is a target for the ubiquitin-proteasome pathway,” EMBO Journal, vol. 16, no. 13, pp. 3797–3804, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. P. J. Morin, A. B. Sparks, V. Korinek et al., “Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC,” Science, vol. 275, no. 5307, pp. 1787–1790, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Molenaar, M. van de Wetering, M. Oosterwegel et al., “XTcf-3 transcription factor mediates β-catenin-induced axis formation in xenopus embryos,” Cell, vol. 86, no. 3, pp. 391–399, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Behrens, J. P. Von Kries, M. Kühl et al., “Functional interaction of β-catenin with the transcription factor LEF-1,” Nature, vol. 382, no. 6592, pp. 638–642, 1996. View at Publisher · View at Google Scholar · View at Scopus
  41. T. C. He, A. B. Sparks, C. Rago et al., “Identification of c-MYC as a target of the APC pathway,” Science, vol. 281, no. 5382, pp. 1509–1512, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. O. Tetsu and F. McCormick, “β-catenin regulates expression of cyclin D1 in colon carcinoma cells,” Nature, vol. 398, no. 6726, pp. 422–426, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Ashokkumar and G. Sudhandiran, “Luteolin inhibits cell proliferation during Azoxymethane-induced experimental colon carcinogenesis via Wnt/ β-catenin pathway,” Investigational New Drugs, vol. 29, no. 2, pp. 273–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. A. K. Pandurangan, P. Dharmalingam, S. K. Ananda Sadagopan, et al., “Luteolin induces growth arrest in colon cancer cells through involvement of Wnt/β-catenin/GSK-3β,” Journal of Environmental Pathology, Toxicology and Oncology, vol. 32, no. 2, pp. 131–139, 2013. View at Publisher · View at Google Scholar
  45. A. Kumar, A. K. Pandurangan, F. Lu et al., “Chemopreventive sphingadienes downregulate wnt signaling via a PP2A/Akt/GSK3β pathway in colon cancer,” Carcinogenesis, vol. 33, no. 9, pp. 1726–1735, 2012. View at Publisher · View at Google Scholar
  46. S. Norazalina, M. E. Norhaizan, and I. Hairuszah, “Suppression of β-catenin and cyclooxygenase-2 expression and cell proliferation in azoxymethane-induced colonic cancer in rats by rice bran phytic acid (PA),” Asian Pacific Journal of Cancer Prevention, vol. 14, pp. 3093–3099, 2013. View at Publisher · View at Google Scholar
  47. Y. Gao and H. Y. Wang, “Inositol pentakisphosphate mediates Wnt/β-catenin signaling,” Journal of Biological Chemistry, vol. 282, no. 36, pp. 26490–26502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Araki, S. Okamura, S. P. Hussain et al., “Regulation of cyclooxygenase-2 expression by the WNT and ras pathways,” Cancer Research, vol. 63, no. 3, pp. 728–734, 2003. View at Scopus
  49. J. Dimberg, A. Hugander, A. Sirsjö, and P. Söderkvist, “Enhanced expression of cyclooxygenase-2 and nuclear β-catenin are related to mutations in the APC gene in human colorectal cancer,” Anticancer Research, vol. 21, no. 2 A, pp. 911–916, 2001. View at Scopus
  50. S. J. Kim, D. S. Im, S. H. Kim et al., “β-Catenin regulates expression of cyclooxygenase-2 in articular chondrocytes,” Biochemical and Biophysical Research Communications, vol. 296, no. 1, pp. 221–226, 2002. View at Publisher · View at Google Scholar · View at Scopus