About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 685074, 9 pages
http://dx.doi.org/10.1155/2013/685074
Research Article

Quantification of Cigarette Smoke Particle Deposition In Vitro Using a Triplicate Quartz Crystal Microbalance Exposure Chamber

British American Tobacco, Group R&D, Regents Park Road, Southampton SO15 8TL, UK

Received 3 October 2012; Accepted 22 November 2012

Academic Editor: Ernesto Alfaro-Moreno

Copyright © 2013 Jason Adamson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Adamson, D. Azzopardi, G. Errington, C. Dickens, J. McAughey, and M. D. Gaca, “Assessment of an in vitro whole cigarette smoke exposure system: the Borgwaldt RM20S 8-syringe smoking machine,” Chemistry Central Journal, vol. 5, article 50, 2011.
  2. M. Aufderheide, J. W. Knebel, and D. Ritter, “An improved in vitro model for testing the pulmonary toxicity of complex mixtures such as cigarette smoke,” Experimental and Toxicologic Pathology, vol. 55, no. 1, pp. 51–57, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Chi-Jen Lin, R. Jean-Phillippe, J. Verreault et al., “An ex vivo approach to the differential parenchymal responses induced by cigarette whole smoke and its vapor phase,” Toxicology, vol. 293, no. 1–3, pp. 125–131, 2012. View at Publisher · View at Google Scholar
  4. Y. Fukano, M. Ogura, K. Eguchi, M. Shibagaki, and M. Suzuki, “Modified procedure of a direct in vitro exposure system for mammalian cells to whole cigarette smoke,” Experimental and Toxicologic Pathology, vol. 55, no. 5, pp. 317–323, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Kaur, M. Lacasse, J. P. Roy et al., “Evaluation of precision and accuracy of the Borgwaldt RM20S® smoking machine designed for in vitro exposure,” Inhalation Toxicology, vol. 22, no. 14, pp. 1174–1183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Maunders, S. Patwardhan, J. Phillips, A. Clack, and A. Richter, “Human bronchial epithelial cell transcriptome: gene expression changes following acute exposure to whole cigarette smoke in vitro,” American Journal of Physiology, vol. 292, no. 5, pp. L1248–L1256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Phillips, B. Kluss, A. Richter, and E. D. Massey, “Exposure of bronchial epithelial cells to whole cigarette smoke: assessment of cellular responses,” ATLA Alternatives to Laboratory Animals, vol. 33, no. 3, pp. 239–248, 2005. View at Scopus
  8. M. J. Scian, M. J. Oldham, D. B. Kane, J. S. Edmiston, and W. J. McKinney, “Characterization of a whole smoke in vitro exposure system (Burghart Mimic Smoker-01),” Inhalation Toxicology, vol. 21, no. 3, pp. 234–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Thorne, J. Wilson, T. S. Kumaravel, E. D. Massey, and M. McEwan, “Measurement of oxidative DNA damage induced by mainstream cigarette smoke in cultured NCI-H292 human pulmonary carcinoma cells,” Mutation Research, vol. 673, no. 1, pp. 3–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Zhang, S. Case, R. P. Bowler, R. J. Martin, D. I. Jiang, and H. W. Chu, “Cigarette smoke modulates PGE2 and host defence against Moraxella catarrhalis infection in human airway epithelial cells,” Respirology, vol. 16, no. 3, pp. 508–516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Beisswenger, J. Platz, C. Seifart, C. Vogelmeier, and R. Bals, “Exposure of differentiated airway epithelial cells to volatile smoke in vitro,” Respiration, vol. 71, no. 4, pp. 402–409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. St-Laurent, L. I. Proulx, L. P. Boulet, and E. Bissonnette, “Comparison of two in vitro models of cigarette smoke exposure,” Inhalation Toxicology, vol. 21, no. 13, pp. 1148–1153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Gualerzi, M. Sciarabba, G. Tartaglia, C. Sforza, and E. Donetti, “Acute effects of cigarette smoke on three-dimensional cultures of normal human oral mucosa,” Inhalation Toxicology, vol. 24, pp. 382–389, 2012. View at Publisher · View at Google Scholar
  14. T. A. Perfetti and A. Rodgman, “The complexity of tobacco and tobacco smoke,” Beitrage zur Tabakforschung International, vol. 24, no. 5, pp. 215–232, 2011. View at Scopus
  15. J. Adamson, S. Hughes, D. Azzopardi, J. McAughey, and M. Gaca, “Real-time assessment of cigarette smoke particle deposition in vitro,” Chemistry Central Journal, vol. 6, article 98, 2012.
  16. H. R. Paur, F. R. Cassee, J. Teeguarden et al., “In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung-A dialog between aerosol science and biology,” Journal of Aerosol Science, vol. 42, no. 10, pp. 668–692, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. G. Teeguarden, P. M. Hinderliter, G. Orr, B. D. Thrall, and J. G. Pounds, “Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments,” Toxicological Sciences, vol. 95, no. 2, pp. 300–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. K. Armitage, M. Dixon, B. E. Frost, D. C. Mariner, and N. M. Sinclair, “The effect of inhalation volume and breath-hold duration on the retention of nicotine and solanesol in the human respiratory tract and on subsequent plasma nicotine concentrations during cigarette smoking,” Beiträge zur Tabakforschung International, vol. 21, pp. 240–249, 2004.
  19. S. Mülhopt, S. Diabaté, T. Krebs, C. Weiss, and H. R. Paur, “Lung toxicity determination by in vitro exposure at the air liquid interface with an integrated online dose measurement,” Journal of Physics: Conference Series, vol. 170, Article ID 012008, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. L. Smith and H. M. Shirazi, “Principles of quartz crystal microbalance/heat conduction calorimetry: measurement of the sorption enthalpy of hydrogen in palladium,” Thermochimica Acta, vol. 432, no. 2, pp. 202–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Yuwono and P. Schulze Lammers, “Odour pollution in the environment and the detection instrumentation,” Agricultural Engineering International, vol. 6, 2004.
  22. G. Saubrey, “Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung,” Zeitschrift für Physik, vol. 155, pp. 206–222, 1959. View at Publisher · View at Google Scholar
  23. M. D. Johnson, J. Schilz, M. V. Djordjevic, J. R. Rice, and P. G. Shields, “Evaluation of in vitro assays for assessing the toxicity of cigarette smoke and smokeless tobacco,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 12, pp. 3263–3304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Rodgman and T. A. Perfetti, The Chemical Components of Tobacco and Tobacco Smoke, CRC Press, Taylor & Francis Group, 2009.
  25. N. E. Klepeis, W. R. Ott, and P. Switzer, “Real-time measurement of outdoor tobacco smoke particles,” Journal of the Air and Waste Management Association, vol. 57, no. 5, pp. 522–534, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Uttenthaler, M. Schräml, J. Mandel, and S. Drost, “Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids,” Biosensors and Bioelectronics, vol. 16, no. 9–12, pp. 735–743, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. H. C. Yeh, R. S. Turner, R. K. Jones, B. A. Muggenburg, D. L. Lundgren, and J. P. Smith, “Characterization of aerosols produced during surgical procedures in hospitals,” Aerosol Science and Technology, vol. 22, no. 2, pp. 151–161, 1995. View at Scopus
  28. G. A. Lenz, E. Karg, B. Lentner et al., “A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles,” Particle and Fibre Toxicology, vol. 6, article 32, 2009.
  29. L. Müller, M. Gasser, D. O’Raemy et al., “Realistic exposure methods for investigating the interaction of nanoparticles with the lung at the air-liquid interface in vitro,” Insciences Journal, vol. 1, no. 1, pp. 30–64, 2011.
  30. S. Bakand and A. Hayes, “Troubleshooting methods for toxicity testing of airborne chemicals in vitro,” Journal of Pharmacological and Toxicological Methods, vol. 61, no. 2, pp. 76–85, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. J. McAughey, C. J. McGrath, and C. J. Dickens, “Particle metrics for mainstream tobacco smoke: implications for dose,” Journal of Aerosol Medicine & Pulmonary Drug Delivery, vol. 22, no. 2, pp. 179–180, 2009.