About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 687156, 4 pages
http://dx.doi.org/10.1155/2013/687156
Research Article

Changes of PBP5 Gene Expression in Enterococcal Isolates from Renal Transplantation Recipients

1Department of Microbiology, Medical University of Gdańsk, Do Studzienki 38 Street, 80-227 Gdańsk, Poland
2Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7 Street, 80-211 Gdańsk, Poland
3Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Dębinki 7 Street, 80-952 Gdańsk, Poland

Received 5 April 2013; Revised 3 June 2013; Accepted 10 June 2013

Academic Editor: Ziad Daoud

Copyright © 2013 T. Jarzembowski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. J. Alangaden, R. Thyagarajan, S. A. Gruber et al., “Infectious complications after kidney transplantation: current epidemiology and associated risk factors,” Clinical Transplantation, vol. 20, no. 4, pp. 401–409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Gołȩbiewska, A. Dȩbska-Ślizień, J. Komarnicka, A. Samet, and B. Rutkowski, “Urinary tract infections in renal transplant recipients,” Transplantation Proceedings, vol. 43, no. 8, pp. 2985–2990, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J.-J. Lu, T.-Y. Chang, C.-L. Perng, and S.-Y. Lee, “The vanB2 gene cluster of the majority of vancomycin-resistant Enterococcus faecium isolates from Taiwan is associated with the pbp5 gene and is carried by Tn5382 containing a novel insertion sequence,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 9, pp. 3937–3939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Depardieu, I. Podglajen, R. Leclercq, E. Collatz, and P. Courvalin, “Modes and modulations of antibiotic resistance gene expression,” Clinical Microbiology Reviews, vol. 20, no. 1, pp. 79–114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Jarzembowski, A. Jozwik, K. Wisniewska, and J. Witkowski, “Single cell level survey on heterogenic glycopeptide and b-lactams resistance,” in Antibiotic Resistant Bacteria—A Continuous Challenge in the New Millenium, M. Pena, Ed., In Tech, Rijeka, Croatia, 2012.
  6. K. L. Robertson and D. C. Thach, “LNA flow-FISH: a flow cytometry-fluorescence in situ hybridization method to detect messenger RNA using locked nucleic acid probes,” Analytical Biochemistry, vol. 390, no. 2, pp. 109–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Waar, J. E. Degener, M. J. Van Luyn, and H. J. M. Harmsen, “Fluorescent in situ hybridization with specific DNA probes offers adequate detection of Enterococcus faecalis and Enterococcus faecium in clinical samples,” Journal of Medical Microbiology, vol. 54, no. 10, pp. 937–944, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Jarzembowski, A. Daca, E. Bryl et al., “Increased pheromone cCF10 expression in Enterococcus faecalis biofilm formed by isolates from renal transplant patients,” Current Microbiology, vol. 65, pp. 656–659, 2012.
  9. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group, “KDIGO clinical practice guideline for the care of kidney transplant recipients,” American Journal of Transplantation, vol. 9, supplement 3, pp. S10–S13, 2009. View at Publisher · View at Google Scholar
  10. L. B. Rice, S. Bellais, L. L. Carias et al., “Impact of specific pbp5 mutations on expression of β-lactam resistance in Enterococcus faecium,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 8, pp. 3028–3032, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Arbeloa, H. Segal, J.-E. Hugonnet et al., “Role of class a penicillin-binding proteins in PBP5-mediated β-lactam resistance in Enterococcus faecalis,” Journal of Bacteriology, vol. 186, no. 5, pp. 1221–1228, 2004. View at Publisher · View at Google Scholar · View at Scopus