About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 689642, 10 pages
http://dx.doi.org/10.1155/2013/689642
Research Article

Analysis of IL-1β Release from Cryopreserved Pooled Lymphocytes in Response to Lipopolysaccharide and Lipoteichoic Acid

Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 012, India

Received 19 April 2013; Accepted 8 July 2013

Academic Editor: Young-Mi Lee

Copyright © 2013 Sreelekshmi R. Nair et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Pyrogens are heterogeneous group of fever-inducing substances derived from Gram-positive and Gram-negative bacteria, fungi, and viruses. They incite immune response by producing endogenous pyrogens such as prostaglandins and other proinflammatory cytokines like IL-1β, IL-6, and TNF-α. The present study was to analyze the influence of cryopreservation in IL-1β release, a marker for inflammatory response from human lymphocytes, in response to exogenous pyrogenic stimulants. Lymphocytes isolated from pooled blood of multiple healthy individuals were cryopreserved in DMSO and glycerol for periods of 7, 14, 30, and 60 days and were challenged with LPS and LTA in vitro. The inflammatory cytokine, IL-1β release, was measured by ELISA method. It was observed that the release of IL-1β increases instantaneously after the initiation of incubation and reaches a maximum at 3 to 5 hours and then gradually decreases and gets stabilized for both pyrogens. Moreover it was also observed that the effect of cryoprotectants, DMSO (10%) and glycerol (10%), showed almost similar results for short-term storage, but DMSO-preserved lymphocytes yielded a better viability for long-term storage. Thus, the isolated cryopreserved lymphocytes system can be a promising approach for the total replacement/alteration to animal experimentation for pyrogenicity evaluation.