About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 690937, 8 pages
http://dx.doi.org/10.1155/2013/690937
Research Article

Recombinant Rat CC10 Protein Inhibits PDGF-Induced Airway Smooth Muscle Cells Proliferation and Migration

Laboratory of Molecular Biology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 650 South Wanping Road, Shanghai 200030, China

Received 8 April 2013; Revised 24 June 2013; Accepted 11 August 2013

Academic Editor: Elena Orlova

Copyright © 2013 Ying Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Tagaya and J. Tamaoki, “Mechanisms of airway remodeling in asthma,” Allergology International, vol. 56, no. 4, pp. 331–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Sumi and Q. Hamid, “Airway remodeling in asthma,” Allergology International, vol. 56, no. 4, pp. 341–348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Carroll, J. Elliot, A. Morton, and A. James, “The structure of large and small airways in nonfatal and fatal asthma,” American Review of Respiratory Disease, vol. 147, no. 2, pp. 405–410, 1993. View at Scopus
  4. J. K. Bentley and M. B. Hershenson, “Airway smooth muscle growth in asthma: proliferation, hypertrophy, and migration,” Proceedings of the American Thoracic Society, vol. 5, no. 1, pp. 89–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Halwani, S. Al-Muhsen, and Q. Hamid, “Airway remodeling in asthma,” Current Opinion in Pharmacology, vol. 10, no. 3, pp. 236–245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Murphy and P. M. O'Byrne, “Recent advances in the pathophysiology of asthma,” Chest, vol. 137, no. 6, pp. 1417–1426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Fredriksson, H. Li, and U. Eriksson, “The PDGF family: four gene products form five dimeric isoforms,” Cytokine and Growth Factor Reviews, vol. 15, no. 4, pp. 197–204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Feske, Y. Gwack, M. Prakriya et al., “A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function,” Nature, vol. 441, no. 7090, pp. 179–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Ohno, Y. Nitta, K. Yamauchi et al., “Eosinophils as a potential source of platelet-derived growth factor B-chain (PDGF-B) in nasal polyposis and bronchial asthma,” American Journal of Respiratory Cell and Molecular Biology, vol. 13, no. 6, pp. 639–647, 1995. View at Scopus
  10. S. Shimizu, E. C. Gabazza, T. Hayashi, M. Ido, Y. Adachi, and K. Suzuki, “Thrombin stimulates the expression of PDGF in lung epithelial cells,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 279, no. 3, pp. L503–L510, 2000. View at Scopus
  11. I. Ito, E. D. Fixman, K. Asai et al., “Platelet-derived growth factor and transforming growth factor-β modulate the expression of matrix metalloproteinases and migratory function of human airway smooth muscle cells,” Clinical and Experimental Allergy, vol. 39, no. 9, pp. 1370–1380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Elias, “Airway remodeling in asthma: unanswered questions,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 3, pp. S168–S171, 2000. View at Scopus
  13. G. Singh and S. L. Katyal, “Clara cells and Clara cell 10 kD protein (CC10),” American Journal of Respiratory Cell and Molecular Biology, vol. 17, no. 2, pp. 141–143, 1997. View at Scopus
  14. G. Singh, S. L. Katyal, and S. A. Gottron, “Antigenic, molecular and functional heterogeneity of Clara cell secretory proteins in the rat,” Biochimica et Biophysica Acta, vol. 829, no. 2, pp. 156–163, 1985. View at Publisher · View at Google Scholar · View at Scopus
  15. A. B. Mukherjee, G. C. Kundu, G. Mantile-Selvaggi et al., “Uteroglobin: a novel cytokine?” Cellular and Molecular Life Sciences, vol. 55, no. 5, pp. 771–787, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. T. C. Umland, S. Swaminathan, G. Singh et al., “Structure of a human Clara cell phospholipid-binding protein-ligand complex at 1.9 Å resolution,” Nature Structural Biology, vol. 1, no. 8, pp. 538–545, 1994. View at Scopus
  17. X. B. Long, S. Hu, N. Wang, H. T. Zhen, Y. H. Cui, and Z. Liu, “Clara cell 10-kDa protein gene transfection inhibits NF-kappaB activity in airway epithelial cells,” PLoS One, vol. 7, Article ID e35960, 2012.
  18. P. Katavolos, C. A. Ackerley, M. E. Clark, and D. Bienzle, “Clara cell secretory protein increases phagocytic and decreases oxidative activity of neutrophils,” Veterinary Immunology and Immunopathology, vol. 139, no. 1, pp. 1–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. X. M. Gioldassi, H. Papadimitriou, V. Mikraki, and N. K. Karamanos, “Clara cell secretory protein: determination of serum levels by an enzyme immunoassay and its importance as an indicator of bronchial asthma in children,” Journal of Pharmaceutical and Biomedical Analysis, vol. 34, no. 4, pp. 823–826, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Ray, Z. Zhang, Y.-C. Lee, J.-L. Gao, and A. B. Mukherjee, “Uteroglobin suppresses allergen-induced TH2 differentiation by down-regulating the expression of serum amyloid A and SOCS-3 genes,” FEBS Letters, vol. 580, no. 25, pp. 6022–6026, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. K. Mandal, R. Ray, Z. Zhang, B. Chowdhury, N. Pattabiraman, and A. B. Mukherjee, “Uteroglobin inhibits prostaglandin F2α receptor-mediated expression of genes critical for the production of pro-inflammatory lipid mediators,” Journal of Biological Chemistry, vol. 280, no. 38, pp. 32897–32904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Ke, X. Wang, X. Xu, and Y. A. Abassi, “The xCELLigence system for real-time and label-free monitoring of cell viability,” Methods in Molecular Biology, vol. 740, pp. 33–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Atienza, N. Yu, S. L. Kirstein et al., “Dynamic and label-freee cell-based assays using the real-time cell electronic sensing system,” Assay and Drug Development Technologies, vol. 4, no. 5, pp. 597–607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Limame, A. Wouters, B. Pauwels et al., “Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays,” PloS One, vol. 7, no. 10, Article ID e46536, 2012.
  25. Y.-D. Xu, J.-M. Cui, Y. Wang et al., “The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats,” Respiratory Research, vol. 11, article 107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Mantile, L. Miele, E. Cordella-Miele, G. Singh, S. L. Katyal, and A. B. Mukherjee, “Human Clara cell 10-kDa protein is the counterpart of rabbit uteroglobin,” Journal of Biological Chemistry, vol. 268, no. 27, pp. 20343–20351, 1993. View at Scopus
  27. H. P. Sørensen and K. K. Mortensen, “Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli,” Microbial Cell Factories, vol. 4, article 1, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. P. R. A. Johnson, M. Roth, M. Tamm et al., “Airway smooth muscle cell proliferation is increased in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 3, pp. 474–477, 2001. View at Scopus
  29. J. K. Burgess, H. L. Jin, Q. I. Ge et al., “Dual ERK and phosphatidylinositol 3-kinase pathways control airway smooth muscle proliferation: differences in asthma,” Journal of Cellular Physiology, vol. 216, no. 3, pp. 673–679, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Pepe, S. Foley, J. Shannon et al., “Differences in airway remodeling between subjects with severe and moderate asthma,” Journal of Allergy and Clinical Immunology, vol. 116, no. 3, pp. 544–549, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. J. A. Hirota, K. Ask, L. Farkas et al., “In vivo role of platelet-derived growth factor-BB in airway smooth muscle proliferation in mouse lung,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 3, pp. 566–572, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. J. Hirst, J. G. Martin, J. V. Bonacci et al., “Proliferative aspects of airway smooth muscle,” Journal of Allergy and Clinical Immunology, vol. 114, no. 2, pp. S2–S17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. J. F. Perez-Zoghbi, C. Karner, S. Ito, M. Shepherd, Y. Alrashdan, and M. J. Sanderson, “Ion channel regulation of intracellular calcium and airway smooth muscle function,” Pulmonary Pharmacology and Therapeutics, vol. 22, no. 5, pp. 388–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. L. Lazaar and R. A. Panettieri Jr., “Airway smooth muscle: a modulator of airway remodeling in asthma,” Journal of Allergy and Clinical Immunology, vol. 116, no. 3, pp. 488–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Camoretti-Mercado, “Targeting the airway smooth muscle for asthma treatment,” Translational Research, vol. 154, no. 4, pp. 165–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Das, L. Mahimainathan, N. Ghosh-Choudhury et al., “TGFβ intercepts nuclear glycogen synthase kinase 3β to inhibit PDGF-induced DNA synthesis in mesangial cells,” FEBS Letters, vol. 581, no. 27, pp. 5259–5267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. C. Allen, P. Seidel, T. Schlosser, E. E. Ramsay, Q. Ge, and A. J. Ammit, “Cyclin D1 in ASM cells from asthmatics is insensitive to corticosteroid inhibition,” Journal of Allergy, vol. 2012, Article ID 307838, 6 pages, 2012. View at Publisher · View at Google Scholar
  38. C. J. Sherr and J. M. Roberts, “CDK inhibitors: positive and negative regulators of G1-phase progression,” Genes and Development, vol. 13, no. 12, pp. 1501–1512, 1999. View at Scopus
  39. C.-L. Du, Y.-J. Xu, X.-S. Liu et al., “Up-regulation of cyclin D1 expression in asthma serum-sensitized human airway smooth muscle promotes proliferation via protein kinase Cα,” Experimental Lung Research, vol. 36, no. 4, pp. 201–210, 2010. View at Publisher · View at Google Scholar · View at Scopus