About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 697051, 13 pages
http://dx.doi.org/10.1155/2013/697051
Research Article

In Silico Screening and Molecular Dynamics Simulation of Disease-Associated nsSNP in TYRP1 Gene and Its Structural Consequences in OCA3

1School of Bio Sciences and Technology (SBST), Bioinformatics Division, Vellore Institute of Technology University, Vellore, Tamil Nadu 632014, India
2Human Genetics Foundation, Torino, Via Nizza 52, 10126 Torino, Italy

Received 20 April 2013; Revised 23 May 2013; Accepted 23 May 2013

Academic Editor: Claudio M. Soares

Copyright © 2013 Balu Kamaraj and Rituraj Purohit. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. V. V. S. Murty, B. Bouchard, S. Mathew, S. Vijayasaradhi, and A. N. Houghton, “Assignment of the human TYRP (brown) locus to chromosome region 9p23 by nonradioactive in situ hybridization,” Genomics, vol. 13, no. 1, pp. 227–229, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Shibahara, H. Taguchi, R. M. Muller et al., “Structural organization of the pigment cell-specific gene located at the brown locus in mouse: its promoter activity and alternatively spliced transcripts,” The Journal of Biological Chemistry, vol. 266, no. 24, pp. 15895–15901, 1991. View at Scopus
  3. R. A. Sturm, B. J. O'Sullivan, N. F. Box et al., “Chromosomal structure of the human TYRP1 and TYRP2 loci and comparison of the tyrosinase-related protein gene family,” Genomics, vol. 29, no. 1, pp. 24–34, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. N. F. Box, J. R. Wyeth, C. J. Mayne, L. E. O'Gorman, N. G. Martin, and R. A. Sturm, “Complete sequence and polymorphism study of the human TYRP1 gene encoding tyrosinase-related protein 1,” Mammalian Genome, vol. 9, no. 1, pp. 50–53, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Vijayasaradhi, P. M. Doskoch, and A. N. Houghton, “Biosynthesis and intracellular movement of the melanosomal membrane glycoprotein gp75, the human b (Brown) locus product,” Experimental Cell Research, vol. 196, no. 2, pp. 233–240, 1991. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Halaban and G. Moellmann, “Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 12, pp. 4809–4813, 1990. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Prota, Melanins and Melanogenesis, Academic Press, New York, NY, USA, 1992.
  8. V. J. Hearing Jr., “Mammalian monophenol monooxygenase (tyrosinase): purification, properties, and reactions catalyzed,” Methods in Enzymology, vol. 142, pp. 154–165, 1987. View at Scopus
  9. G. Prota, “Some new aspects of eumelanin chemistry,” Progress in Clinical and Biological Research, vol. 256, pp. 101–124, 1988. View at Scopus
  10. S. Alonso, N. Izagirre, I. Smith-Zubiaga et al., “Complex signatures of selection for the melanogenic loci TYR, TYRP1 and DCT in humans,” BMC Evolutionary Biology, vol. 8, no. 1, article 74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Ito, “A chemist's view of melanogenesis,” Pigment Cell Research, vol. 16, no. 3, pp. 230–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Jiménez-Cervantes, F. Solano, T. Kobayashi et al., “A new enzymatic function in the melanogenic pathway. The 5,6- dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1),” The Journal of Biological Chemistry, vol. 269, no. 27, pp. 17993–18000, 1994. View at Scopus
  13. T. Kobayashi, K. Urabe, A. Winder et al., “Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis,” The EMBO Journal, vol. 13, no. 24, pp. 5818–5825, 1994. View at Scopus
  14. T. Kobayashi, W. D. Vieira, B. Potterf, C. Sakai, G. Imokawa, and V. J. Hearing, “Modulation of melanogenic protein expression during the switch from eu- to pheomelanogenesis,” Journal of Cell Science, vol. 108, no. 6, pp. 2301–2309, 1995. View at Scopus
  15. T. Kobayashi, G. Imokawa, D. C. Bennett, and V. J. Hearing, “Tyrosinase stabilization by Tyrp1 (the brown locus protein),” The Journal of Biological Chemistry, vol. 273, no. 48, pp. 31801–31805, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Hirobe and H. Abe, “Genetic and epigenetic control of the proliferation and differentiation of mouse epidermal melanocytes in culture,” Pigment Cell Research, vol. 12, no. 3, pp. 147–163, 1999. View at Scopus
  17. R. Johnson and I. J. Jackson, “Light is a dominant mouse mutation resulting in premature cell death,” Nature Genetics, vol. 1, no. 3, pp. 226–229, 1992. View at Scopus
  18. D. Fang, Y. Tsuji, and V. Setaluri, “Selective down-regulation of tyrosinase family gene TYRP1 by inhibition of the activity of melanocyte transcription factor, MITF,” Nucleic Acids Research, vol. 30, no. 14, pp. 3096–3106, 2002. View at Scopus
  19. R. Sarangarajan and R. E. Boissy, “Tyrp1 and oculocutaneous albinism type 3,” Pigment Cell Research, vol. 14, no. 6, pp. 437–444, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. R. E. Boissy, C. Sakai, H. Zhao, T. Kobayashi, and V. J. Hearing, “Human tyrosinase related protein-1 (TRP-1) does not function as a DHICA oxidase activity in contrast to murine TRP-1,” Experimental Dermatology, vol. 7, no. 4, pp. 198–204, 1998. View at Scopus
  21. H. Zhao, Y. Zhao, J. J. Nordlund, and R. E. Boissy, “Human TRP-1 has tyrosine hydroxylase but no dopa oxidase activity,” Pigment Cell Research, vol. 7, no. 3, pp. 131–140, 1994. View at Scopus
  22. K. Urabe, P. Aroca, and V. J. Hearing, “From gene to protein: determination of melanin synthesis,” Pigment Cell Research, vol. 6, no. 4, pp. 186–192, 1993. View at Scopus
  23. C. Olivares, C. Jiménez-Cervantes, J. A. Lozano, F. Solano, and J. C. García-Borrón, “The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase,” Biochemical Journal, vol. 354, no. 1, pp. 131–139, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Manga, K. Sato, L. Ye, F. Beermann, M. Lynn Lamoreux, and S. J. Orlow, “Mutational analysis of the modulation of tyrosinase by tyrosinase-related proteins 1 and 2 in vitro,” Pigment Cell Research, vol. 13, no. 5, pp. 364–374, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. M. A. Carvalho, S. M. Marsillac, R. Karchin et al., “Determination of cancer risk associated with germ line BRCA1 missense variants by functional analysis,” Cancer Research, vol. 67, no. 4, pp. 1494–1501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Carvalho, M. A. Pino, R. Karchin et al., “Analysis of a set of missense, frameshift, and in-frame deletion variants of BRCA1,” Mutation Research, vol. 660, no. 1-2, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. D. E. Goldgar, D. F. Easton, A. M. Deffenbaugh, A. N. A. Monteiro, S. V. Tavtigian, and F. J. Couch, “Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2,” American Journal of Human Genetics, vol. 75, no. 4, pp. 535–544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Karchin, “Next generation tools for the annotation of human SNPs,” Briefings in Bioinformatics, vol. 10, no. 1, pp. 35–52, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Balu and R. Purohit, “Mutational analysis of TYR gene and its structural consequences in OCA1A,” Gene, vol. 513, no. 1, pp. 184–195, 2013.
  30. R. Purohit, V. Rajendran, and R. Sethumadhavan, “Relationship between mutation of serine residue at 315th position in M. tuberculosis catalase-peroxidase enzyme and Isoniazid susceptibility: an in silico analysis,” Journal of Molecular Modeling, vol. 17, no. 4, pp. 869–877, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Purohit, V. Rajendran, and R. Sethumadhavan, “Studies on adaptability of binding residues and flap region of TMC-114 resistance HIV-1 protease mutants,” Journal of Biomolecular Structure and Dynamics, vol. 29, no. 1, pp. 137–152, 2011. View at Scopus
  32. A. Kumar, V. Rajendran, R. Sethumadhavan, and R. Purohit, “In silico prediction of a disease-associated STIL mutant and its affect on the recruitment of centromere protein J (CENPJ),” FEBS Open Biology, vol. 2, pp. 285–293, 2012. View at Publisher · View at Google Scholar
  33. A. Kumar, V. Rajendran, R. Sethumadhavan, and R. Purohit, “Relationship between a point mutation S97C in CK1δ protein and its affect on ATP-binding affinity,” Journal of Biomolecular Structure & Dynamics, 2013. View at Publisher · View at Google Scholar
  34. V. Rajendran and R. Sethumadhavan, “Drug resistance mechanism of PncA in Mycobacterium tuberculosis,” Journal of Biomolecular Structure and Dynamics, 2013. View at Publisher · View at Google Scholar
  35. V. Rajendran, R. Purohit, and R. Sethumadhavan, “In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein,” Amino Acids, vol. 43, no. 2, pp. 603–615, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Balu and R. Purohit, “In-silico analysis of Betaine Aldehyde Dehydrogenase2 of Oryza sativa and significant mutations responsible for fragrance,” Journal of Plant Interactions, pp. 1–13, 2012. View at Publisher · View at Google Scholar
  37. K. Balu, V. Rajendran, R. Sethumadhavan, and R. Purohit, “Investigation of binding phenomenon of NSP3 and p130Cas mutants and their effect on cell signalling,” Cell Biochemistry and Biophysics, pp. 1–11, 2013. View at Publisher · View at Google Scholar
  38. I. A. Adzhubei, S. Schmidt, L. Peshkin et al., “A method and server for predicting damaging missense mutations,” Nature Methods, vol. 7, no. 4, pp. 248–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Kumar, S. Henikoff, and P. C. Ng, “Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm,” Nature Protocols, vol. 4, no. 7, pp. 1073–1082, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Capriotti, P. Fariselli, I. Rossi, and R. Casadio, “A three-state prediction of single point mutations on protein stability changes,” BMC Bioinformatics, vol. 9, no. 2, article S6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. P. D. Thomas, M. J. Campbell, A. Kejariwal et al., “PANTHER: a library of protein families and subfamilies indexed by function,” Genome Research, vol. 13, no. 9, pp. 2129–2141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Capriotti, R. Calabrese, and R. Casadio, “Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information,” Bioinformatics, vol. 22, no. 22, pp. 2729–2734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Calabrese, E. Capriotti, P. Fariselli, P. L. Martelli, and R. Casadio, “Functional annotations improve the predictive score of human disease-related mutations in proteins,” Human Mutation, vol. 30, no. 8, pp. 1237–1244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Ferrer-Costa, J. L. Gelpí, L. Zamakola, I. Parraga, X. de la Cruz, and M. Orozco, “PMUT: a web-based tool for the annotation of pathological mutations on proteins,” Bioinformatics, vol. 21, no. 14, pp. 3176–3178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Li, V. G. Krishnan, M. E. Mort et al., “Automated inference of molecular mechanisms of disease from amino acid substitutions,” Bioinformatics, vol. 25, no. 21, pp. 2744–2750, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Amberger, C. A. Bocchini, A. F. Scott, and A. Hamosh, “McKusick's Online Mendelian Inheritance in Man (OMIM®),” Nucleic Acids Research, vol. 37, no. 1, pp. D793–D796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. S. T. Sherry, M.-H. Ward, M. Kholodov et al., “DbSNP: the NCBI database of genetic variation,” Nucleic Acids Research, vol. 29, no. 1, pp. 308–311, 2001. View at Scopus
  48. Y. L. Yip, H. Scheib, A. V. Diemand et al., “The Swiss-Prot variant page and the ModSNP database: a resource for sequence and structure information on human protein variants,” Human Mutation, vol. 23, no. 5, pp. 464–470, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. L. Yip, M. Famiglietti, A. Gos et al., “Annotating single amino acid polymorphisms in the UniProt/Swiss-Prot knowledgebase,” Human Mutation, vol. 29, no. 3, pp. 361–366, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Boeckmann, A. Bairoch, R. Apweiler et al., “The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003,” Nucleic Acids Research, vol. 31, no. 1, pp. 365–370, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Kaplan and T. G. Littlejohn, “Swiss-PDB viewer (Deep View),” Briefings in Bioinformatics, vol. 2, no. 2, pp. 195–197, 2001. View at Scopus
  52. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GRGMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation,” Journal of Chemical Theory and Computation, vol. 4, no. 3, pp. 435–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Zhang, “I-TASSER server for protein 3D structure prediction,” BMC Bioinformatics, vol. 9, article 40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. R. A. Laskowski, J. A. C. Rullmann, M. W. MacArthur, R. Kaptein, and J. M. Thornton, “AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR,” Journal of Biomolecular NMR, vol. 8, no. 4, pp. 477–486, 1996. View at Scopus
  55. M. Wiederstein and M. J. Sippl, “ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins,” Nucleic Acids Research, vol. 35, pp. W407–W410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Dinola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” The Journal of Chemical Physics, vol. 81, no. 8, pp. 3684–3690, 1984. View at Scopus
  57. T. E. Cheatham III, J. L. Miller, T. Fox, T. A. Darden, and P. A. Kollman, “Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins,” Journal of the American Chemical Society, vol. 117, no. 14, pp. 4193–4194, 1995. View at Scopus
  58. P. J. Turner, XMGRACE, Version 5.1.19, Center For Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, Ore, USA, 2005.
  59. A. Amadei, A. B. M. Linssen, and H. J. C. Berendsen, “Essential dynamics of proteins,” Proteins: Structure, Function and Genetics, vol. 17, no. 4, pp. 412–425, 1993. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Thusberg and M. Vihinen, “Pathogenic or not? and if so, then how? Studying the effects of missense mutations using bioinformatics methods,” Human Mutation, vol. 30, no. 5, pp. 703–714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Hicks, D. A. Wheeler, S. E. Plon, and M. Kimmel, “Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed,” Human Mutation, vol. 32, no. 6, pp. 661–668, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. K.-H. Zhang, Z. Li, J. Lei et al., “Oculocutaneous Albinism type 3 (OCA3): analysis of two novel mutations in TYRP1 gene in two Chinese patients,” Cell Biochemistry and Biophysics, vol. 61, no. 3, pp. 523–529, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. D. R. Livesay, S. Dallakyan, G. G. Wood, and D. J. Jacobs, “A flexible approach for understanding protein stability,” FEBS Letters, vol. 576, no. 3, pp. 468–476, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Verma, D. J. Jacobs, and D. R. Livesay, “Changes in lysozyme flexibility upon mutation are frequent, large and long-ranged,” PLoS Computational Biology, vol. 8, no. 3, Article ID 100240, 2012.
  65. A. A. Ribeiro and R. B. de Alencastro, “Mixed Monte Carlo/molecular dynamics simulations of the prion protein,” Journal of Molecular Graphics and Modelling, vol. 42, pp. 1–6, 2013.
  66. W. Kabsch and C. Sander, “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features,” Biopolymers, vol. 22, no. 12, pp. 2577–2637, 1983. View at Scopus
  67. D. R. Simeonov, X. Wang, C. Wang, et al., “DNA variations in oculocutaneous Albinism: an updated mutation List and current outstanding issues in molecular diagnostics,” Human Mutation, vol. 34, no. 6, pp. 827–835, 2013. View at Publisher · View at Google Scholar