About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 698141, 14 pages
http://dx.doi.org/10.1155/2013/698141
Research Article

Biocompatible Bacterial Cellulose-Poly(2-hydroxyethyl methacrylate) Nanocomposite Films

1Department of Chemistry and CICECO, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
2Department of Cellular Biology and Histology, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
3“Materials + Technologies” Group, Department of Chemical and Environmental Engineering, Polytechnic School, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 San Sebastián, Spain

Received 30 April 2013; Accepted 15 July 2013

Academic Editor: Dong-Wook Han

Copyright © 2013 Andrea G. P. R. Figueiredo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Dufresne, “Cellulose-Based Composites and Nanocomposites,” in Monomers, Polymers and Composites From Renewable Resources, M. N. Belgacem and A. Gandini, Eds., Elsevier, Amsterdam, Netherlands, 2008.
  2. D. Klemm, B. Heublein, H.-P. Fink, and A. Bohn, “Cellulose: fascinating biopolymer and sustainable raw material,” Angewandte Chemie, vol. 44, no. 22, pp. 3358–3393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Heinze and T. Liebert, “Celluloses and polyoses/hemicelluloses,” in Polymer Science, M. Krzysztof and M. Martin, Eds., Elsevier, Amsterdam, Netherlands, 2012.
  4. D. Klemm, F. Kramer, S. Moritz et al., “Nanocelluloses: a new family of nature-based materials,” Angewandte Chemie, vol. 50, no. 24, pp. 5438–5466, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H. P. S. Abdul Khalil, A. H. Bhat, and A. F. Ireana Yusra, “Green composites from sustainable cellulose nanofibrils: a review,” Carbohydrate Polymers, vol. 87, no. 2, pp. 963–979, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. L. M. M. Costa, G. M. de Olyveira, P. Basmaji, and L. X. Filho, “Bacterial cellulose towards functional medical materials,” Journal of Biomaterials and Tissue Engineering, vol. 2, no. 3, pp. 185–196, 2012.
  7. R. J. B. Pinto, M. C. Neves, C. P. Neto, and T. Trindade, “Composites of cellulose and metal nanoparticles,” in Nanocomposites–New Trends and Developments, F. Ebrahimi, Ed., InTech, Rijeka, Croatia, 2012.
  8. P. Carreira, J. A. S. Mendes, E. Trovatti et al., “Utilization of residues from agro-forest industries in the production of high value bacterial cellulose,” Bioresource Technology, vol. 102, no. 15, pp. 7354–7360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Trovatti, L. S. Serafim, C. S. R. Freire, A. J. D. Silvestre, and C. P. Neto, “Gluconacetobacter sacchari: an efficient bacterial cellulose cell-factory,” Carbohydrate Polymers, vol. 86, no. 3, pp. 1417–1420, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Fu, J. Zhang, and G. Yang, “Present status and applications of bacterial cellulose-based materials for skin tissue repair,” Carbohydrate Polymers, vol. 92, no. 2, pp. 1432–1442, 2013.
  11. L. M. M. Costa, G. M. de Olyveira, B. M. Cherian, A. L. Leão, S. F. de Souza, and M. Ferreira, “Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron adstringens bark extract for medical applications,” Industrial Crops and Products, vol. 41, no. 1, pp. 198–202, 2013.
  12. L. M. M. Costa, G. M. Olyveira, P. Basmaji et al., “Novel otoliths/bacterial cellulose nanocomposites as a potential natural product for direct dental pulp capping,” Journal of Biomaterials and Tissue Engineering, vol. 2, no. 1, pp. 48–53, 2012.
  13. E. Trovatti, C. S. R. Freire, P. C. Pinto et al., “Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies,” International Journal of Pharmaceutics, vol. 435, no. 1, pp. 83–87, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. J. L. Lopes, J. M. Machado, L. Castanheira et al., “Friction and wear behaviour of bacterial cellulose against articular cartilage,” Wear, vol. 271, no. 9-10, pp. 2328–2333, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. R. J. B. Pinto, P. A. A. P. Marques, C. P. Neto, T. Trindade, S. Daina, and P. Sadocco, “Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers,” Acta Biomaterialia, vol. 5, no. 6, pp. 2279–2289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Hobzova, M. Duskova-Smrckova, J. Michalek, E. Karpushkin, and P. Gatenholm, “Methacrylate hydrogels reinforced with bacterial cellulose,” Polymer International, vol. 61, no. 7, pp. 1193–1201, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Feng, X. Zhang, Y. Shen, K. Yoshino, and W. Feng, “A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite,” Carbohydrate Polymers, vol. 87, no. 1, pp. 644–649, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. G. F. Perotti, H. S. Barud, Y. Messaddeq, S. J. L. Ribeiro, and V. R. L. Constantino, “Bacterial cellulose-laponite clay nanocomposites,” Polymer, vol. 52, no. 1, pp. 157–163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Shah and R. M. Brown Jr., “Towards electronic paper displays made from microbial cellulose,” Applied Microbiology and Biotechnology, vol. 66, no. 4, pp. 352–355, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. H. S. Barud, J. M. A. Caiut, J. Dexpert-Ghys, Y. Messaddeq, and S. J. L. Ribeiro, “Transparent bacterial cellulose-boehmite-epoxi-siloxane nanocomposites,” Composites A, vol. 43, no. 6, pp. 973–977, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. A. Caiut, H. D. S. Barud, Y. Messaddeq, and S. J. L. Ribeiro, “Optically transparent composites based on bacterial cellulose and boehmite, siloxane and/or a boehmite-siloxane system,” Patent WO/2012/100315, 2012.
  22. E. Trovatti, L. Oliveira, C. S. R. Freire et al., “Novel bacterial cellulose-acrylic resin nanocomposites,” Composites Science and Technology, vol. 70, no. 7, pp. 1148–1153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Gea, E. Bilotti, C. T. Reynolds, N. Soykeabkeaw, and T. Peijs, “Bacterial cellulose-poly(vinyl alcohol) nanocomposites prepared by an in-situ process,” Materials Letters, vol. 64, no. 8, pp. 901–904, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. I. M. G. Martins, S. P. Magina, L. Oliveira et al., “New biocomposites based on thermoplastic starch and bacterial cellulose,” Composites Science and Technology, vol. 69, no. 13, pp. 2163–2168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. C. M. Fernandes, L. Oliveira, C. S. R. Freire et al., “Novel transparent nanocomposite films based on chitosan and bacterial cellulose,” Green Chemistry, vol. 11, no. 12, pp. 2023–2029, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. C. M. Fernandes, C. S. R. Freire, A. J. D. Silvestre et al., “Transparent chitosan films reinforced with a high content of nanofibrillated cellulose,” Carbohydrate Polymers, vol. 81, no. 2, pp. 394–401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Trovatti, S. C. M. Fernandes, L. Rubatat, C. S. R. Freire, A. J. D. Silvestre, and C. P. Neto, “Sustainable nanocomposite films based on bacterial cellulose and pullulan,” Cellulose, vol. 19, no. 3, pp. 729–737, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. A. L. Buyanov, I. V. Gofman, L. G. Revel'skaya, A. K. Khripunov, and A. A. Tkachenko, “Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly(acrylamide or acrylamide-sodium acrylate) hydrogels,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 3, no. 1, pp. 102–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Halib, M. C. I. M. Amin, and I. Ahmad, “Unique stimuli responsive characteristics of electron beam synthesized bacterial cellulose/acrylic acid composite,” Journal of Applied Polymer Science, vol. 116, no. 5, pp. 2920–2929, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Zhang, J. Rong, W. Li, Z. Lin, and X. Zhang, “Preparation and characterization of bacterial cellulose/polyacrylamide hydrogel,” Acta Polymerica Sinica, no. 6, pp. 602–607, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Kramer, D. Klemm, D. Schumann et al., “Nanocellulose polymer composites as innovative pool for (Bio)material development,” Macromolecular Symposia, vol. 244, pp. 136–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. C. I. Mohd Amin, N. Ahmad, N. Halib, and I. Ahmad, “Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery,” Carbohydrate Polymers, vol. 88, no. 2, pp. 465–473, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Kopeĉek, “Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials,” Journal of Polymer Science A, vol. 47, no. 22, pp. 5929–5946, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. T. V. Chirila, “An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application,” Biomaterials, vol. 22, no. 24, pp. 3311–3317, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Atzet, S. Curtin, P. Trinh, S. Bryant, and B. Ratner, “Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds,” Biomacromolecules, vol. 9, no. 12, pp. 3370–3377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Horák, H. Hlídková, J. Hradil, M. Lapčíková, and M. Šlouf, “Superporous poly(2-hydroxyethyl methacrylate) based scaffolds: preparation and characterization,” Polymer, vol. 49, no. 8, pp. 2046–2054, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Hestrin and M. Schramm, “Synthesis of cellulose by Acetobacter xylinum—II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose,” The Biochemical Journal, vol. 58, no. 2, pp. 345–352, 1954. View at Scopus
  38. S. C. M. Fernandes, P. Sadocco, A. Alonso-Varona et al., “Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups,” ACS Applied Materials & Interfaces, vol. 5, no. 8, pp. 3290–3297, 2013.
  39. D. Gulsen and A. Chauhan, “Effect of water content on transparency, swelling, lidocaine diffusion in p-HEMA gels,” Journal of Membrane Science, vol. 269, no. 1-2, pp. 35–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. D. N. S. Hon, Chemical Modification of Lignocellulosic Materials, Marcel Dekker, New York, NY, USA, 1996.
  41. D. Klemm, Comprehensive Cellulose Chemistry: Fundamentals and Analytical Methods, Wiley-VCH, 1998.
  42. N. Nishioka, T. Itoh, and M. Uno, “Thermal decomposition of cellulose/synthetic polymer blends containing grafted products. IV. Cellulose/poly(2-hydroxyethyl methacrylate) blends,” Polymer Journal, vol. 31, no. 12, pp. 1218–1223, 1999. View at Scopus
  43. R. K. Bose and K. K. S. Lau, “Mechanical properties of ultrahigh molecular weight PHEMA hydrogels synthesized using initiated chemical vapor deposition,” Biomacromolecules, vol. 11, no. 8, pp. 2116–2122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Pértile, S. Moreira, F. Andrade, L. Domingues, and M. Gama, “Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion,” Biotechnology Progress, vol. 28, no. 2, pp. 526–532, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. M. E. Gomes, T. Rada, and R. L. Reis, “Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering,” Tissue Engineering B, vol. 15, no. 2, pp. 113–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Sterodimas, J. De Faria, B. Nicaretta, and I. Pitanguy, “Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 63, no. 11, pp. 1886–1892, 2010. View at Publisher · View at Google Scholar · View at Scopus