About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 703048, 12 pages
http://dx.doi.org/10.1155/2013/703048
Review Article

Microvesicles as Potential Ovarian Cancer Biomarkers

Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy

Received 12 October 2012; Accepted 10 December 2012

Academic Editor: Tavan Janvilisri

Copyright © 2013 Ilaria Giusti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Rak, “Microparticles in cancer,” Seminars in Thrombosis and Hemostasis, vol. 36, no. 8, pp. 888–906, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Schifferli, “Microvesicles are messengers,” Seminars in Immunopathology, vol. 33, no. 5, pp. 393–394, 2011.
  3. E. Shai and D. Varon, “Development, cell differentiation, angiogenesis-microparticles and their roles in angiogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 1, pp. 10–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. K. Enjeti, L. F. Lincz, and M. Seldon, “Microparticles in health and disease,” Seminars in Thrombosis and Hemostasis, vol. 34, no. 7, pp. 683–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Mathivanan, H. Ji, and R. J. Simpson, “Exosomes: extracellular organelles important in intercellular communication,” Journal of Proteomics, vol. 73, no. 10, pp. 1907–1920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Gyorgy, K. Modos, E. Pallinger, et al., “Detection and isolation of cell-derived microparticles are compromised by protein complexes due to shared biophysical parameters,” Blood, vol. 117, no. 4, pp. e39–e48, 2011.
  7. J. F. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” British Journal of Cancer, vol. 26, no. 4, pp. 239–257, 1972. View at Scopus
  8. E. G. Trams, C. J. Lauter, N. Salem, and U. Heine, “Exfoliation of membrane ecto-enzymes in the form of micro-vesicles,” Biochimica et Biophysica Acta, vol. 645, no. 1, pp. 63–70, 1981. View at Scopus
  9. C. Théry, S. Amigorena, G. Raposo, and A. Clayton, “Isolation and characterization of exosomes from cell culture supernatants and biological fluids,” Current Protocols in Cell Biology, vol. 3, p. 3.22, 2006. View at Scopus
  10. C. Théry, M. Ostrowski, and E. Segura, “Membrane vesicles as conveyors of immune responses,” Nature Reviews, vol. 9, no. 8, pp. 581–593, 2009.
  11. K. Al-Nedawi, B. Meehan, J. Micallef et al., “Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells,” Nature Cell Biology, vol. 10, no. 5, pp. 619–624, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee, and J. O. Lötvall, “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nature Cell Biology, vol. 9, no. 6, pp. 654–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Chargaff and R. West, “The biological significance of the thromboplastic protein of blood,” Journal of Biological Chemistry, vol. 166, no. 1, pp. 189–197, 1946.
  14. B. Hugel, F. Zobairi, and J. M. Freyssinet, “Measuring circulating cell-derived microparticles,” Journal of Thrombosis and Haemostasis, vol. 2, pp. 1846–1847, 2004.
  15. V. Dolo, A. Ginestra, G. Ghersi, H. Nagase, and M. L. Vittorelli, “Human breast carcinoma cells cultured in the presence of serum shed membrane vesicles rich in gelatinolytic activities,” Journal of Submicroscopic Cytology and Pathology, vol. 26, no. 2, pp. 173–180, 1994. View at Scopus
  16. M. A. Antonyak, B. Li, L. K. Boroughs et al., “Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 4852–4857, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Hugel, M. C. Martínez, C. Kunzelmann, and J. M. Freyssinet, “Membrane microparticles: two sides of the coin,” Physiology, vol. 20, pp. 22–27, 2005.
  18. C. D'Souza-Schorey and J. W. Clancy, “Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers,” Genes & Development, vol. 26, no. 12, pp. 1287–1299, 2012.
  19. J. Skog, T. Würdinger, S. van Rijn et al., “Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers,” Nature Cell Biology, vol. 10, no. 12, pp. 1470–1476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. F. Mause and C. Weber, “Microparticles: protagonists of a novel communication network for intercellular information exchange,” Circulation Research, vol. 107, no. 9, pp. 1047–1057, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Taraboletti, S. D'Ascenzo, P. Borsotti, R. Giavazzi, A. Pavan, and V. Dolo, “Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells,” American Journal of Pathology, vol. 160, no. 2, pp. 673–680, 2002. View at Scopus
  22. V. Dolo, S. D'Ascenzo, I. Giusti, D. Millimaggi, G. Taraboletti, and A. Pavan, “Shedding of membrane vesicles by tumor and endothelial cells,” Italian Journal of Anatomy and Embryology, vol. 110, no. 2, pp. 127–133, 2005. View at Scopus
  23. A. Ginestra, M. D. la Placa, F. Saladino, D. Cassarà, H. Nagase, and M. L. Vittorelli, “The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness,” Anticancer Research, vol. 18, no. 5, pp. 3433–3437, 1998. View at Scopus
  24. J. M. Inal, E. A. Ansa-Addo, D. Stratton, et al., “Microvesicles in health and disease,” Archivum Immunologiae et Therapiae Experimentalis, vol. 60, no. 2, pp. 107–121, 2012.
  25. A. Angelucci, S. D'Ascenzo, C. Festuccia et al., “Vesicle-associated urokinase plasminogen activator promotes invasion in prostate cancer cell lines,” Clinical and Experimental Metastasis, vol. 18, no. 2, pp. 163–170, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. L. E. Graves, E. V. Ariztia, J. R. Navari, H. J. Matzel, M. S. Stack, and D. A. Fishman, “Proinvasive properties of ovarian cancer ascites-derived membrane vesicles,” Cancer Research, vol. 64, no. 19, pp. 7045–7049, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. F. F. van Doormaal, A. Kleinjan, M. Di Nisio, H. R. Büller, and R. Nieuwland, “Cell-derived microvesicles and cancer,” Netherlands Journal of Medicine, vol. 67, no. 7, pp. 266–273, 2009. View at Scopus
  28. M. N. Abid Hussein, A. N. Böing, A. Sturk, C. M. Hau, and R. Nieuwland, “Inhibition of microparticle release triggers endothelial cell apoptosis and detachment,” Thrombosis and Haemostasis, vol. 98, no. 5, pp. 1096–1107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Shedden, X. T. Xie, P. Chandaroy, Y. T. Chang, and G. R. Rosania, “Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles,” Cancer Research, vol. 63, no. 15, pp. 4331–4337, 2003. View at Scopus
  30. V. Huber, S. Fais, M. Iero et al., “Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape,” Gastroenterology, vol. 128, no. 7, pp. 1796–1804, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. W. K. Jeong, E. Wieckowski, D. D. Taylor, T. E. Reichert, S. Watkins, and T. L. Whiteside, “Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes,” Clinical Cancer Research, vol. 11, no. 3, pp. 1010–1020, 2005. View at Scopus
  32. R. Valenti, V. Huber, M. Iero, P. Filipazzi, G. Parmiani, and L. Rivoltini, “Tumor-released microvesicles as vehicles of immunosuppression,” Cancer Research, vol. 67, no. 7, pp. 2912–2915, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. B. Whitlow and L. M. Klein, “Response of SCC-12F, a human squamous cell carcinoma cell line, to complement attack,” Journal of Investigative Dermatology, vol. 109, no. 1, pp. 39–45, 1997. View at Scopus
  34. P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature, vol. 438, no. 7070, pp. 932–936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. D. G. Tang and C. J. Conti, “Endothelial cell development, vasculogenesis, angiogenesis, and tumor neovascularization: an update,” Seminars in Thrombosis and Hemostasis, vol. 30, no. 1, pp. 109–117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Al-Nedawi, B. Meehan, R. S. Kerbel, A. C. Allison, and A. Rak, “Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 10, pp. 3794–3799, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Millimaggi, M. Mari, S. D'Ascenzo et al., “Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells,” Neoplasia, vol. 9, no. 4, pp. 349–357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Taraboletti, S. D'Ascenzo, I. Giusti et al., “Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH 1,” Neoplasia, vol. 8, no. 2, pp. 96–103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Giusti, S. D'Ascenzo, D. Millimaggi et al., “Cathepsin B mediates the pH-dependent proinvasive activity of tumor-shed microvesicles,” Neoplasia, vol. 10, no. 5, pp. 481–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. T. H. Lee, E. D’Asti, N. Magnus, K. Al-Nedawi, B. Meehan, and J. Rak, “Microvesicles as mediators of intercellular communication in cancer-the emerging science of cellular ‘‘debris’’,” Seminars in Immunopathology, vol. 33, no. 5, pp. 455–467, 2011.
  41. G. Camussi, M. C. Deregibus, S. Bruno, et al., “Exosoome/microvesicle-mediated epigenetic reprogramming of cells,” American Journal of Cancer Research, vol. 1, no. 1, pp. 98–110, 2011.
  42. C. W. Kim, H. M. Lee, T. H. Lee, et al., “Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin,” Cancer Research, vol. 62, pp. 6312–6317, 2002.
  43. M. Jayachandran, V. M. Miller, J. A. Heit, and W. G. Owen, “Methodology for isolation, identification and characterization of microvesicles in peripheral blood,” Journal of Immunological Methods, vol. 375, no. 1-2, pp. 207–214, 2012.
  44. B. Toth, S. Liebhardt, K. Steinig et al., “Platelet-derived microparticles and coagulation activation in breast cancer patients,” Thrombosis and Haemostasis, vol. 100, no. 4, pp. 663–669, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. J. I. Zwicker, H. A. Liebman, D. Neuberg et al., “Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy,” Clinical Cancer Research, vol. 15, no. 22, pp. 6830–6840, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. J. VanWijk, E. VanBavel, A. Sturk, and R. Nieuwland, “Microparticles in cardiovascular diseases,” Cardiovascular Research, vol. 59, no. 2, pp. 277–287, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. R. J. Berckmans, R. Nieuwland, A. N. Böing, F. P. Romijn, C. E. Hack, and A. Sturk, “Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation,” Thrombosis and Haemostasis, vol. 85, no. 4, pp. 639–646, 2001. View at Scopus
  48. K. Joop, R. J. Berckmans, R. Nieuwland et al., “Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms,” Thrombosis and Haemostasis, vol. 85, no. 5, pp. 810–820, 2001. View at Scopus
  49. P. L. Gross, B. C. Furie, G. Merrill-Skoloff, J. Chou, and B. Furie, “Leukocyte-versus microparticle-mediated tissue factor transfer during arteriolar thrombus development,” Journal of Leukocyte Biology, vol. 78, no. 6, pp. 1318–1326, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. G. M. Thomas, L. Panicot-Dubois, R. Lacroix, et al., “Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo,” Journal of Experimental Medicine, vol. 206, no. 9, pp. 1913–1927, 2009.
  51. Y. Yuana, T. H. Oosterkamp, S. Bahatyrova et al., “Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles,” Journal of Thrombosis and Haemostasis, vol. 8, no. 2, pp. 315–323, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Yuana, R. M. Bertina, and S. Osanto, “Pre-analytical and analytical issues in the analysis of blood microparticles,” Journal of Thrombosis and Haemostasis, vol. 105, no. 3, pp. 396–408, 2011.
  53. A. E. Michelsen, R. Wergeland, O. Stokke, and F. Brosstad, “Development of a time-resolved immunofluorometric assay for quantifying platelet-derived microparticles in human plasma,” Thrombosis Research, vol. 117, no. 6, pp. 705–711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. W. Jy, L. L. Horstman, J. J. Jimenez, et al., “Measuring circulating cell-derived microparticles,” Journal of Thrombosis and Haemostasis, vol. 2, no. 10, pp. 1842–1851, 2004.
  55. R. Lacroix, S. Robert, P. Poncelet, R. S. Kasthuri, N. S. Key, and F. Dignat-George, “Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC collaborative workshop,” Journal of Thrombosis and Haemostasis, vol. 8, no. 11, pp. 2571–2574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Robert, P. Poncelet, R. Lacroix et al., “Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies?” Journal of Thrombosis and Haemostasis, vol. 7, no. 1, pp. 190–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. D. E. Connor, T. Exner, D. D. F. Ma, and J. E. Joseph, “The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib,” Thrombosis and Haemostasis, vol. 103, no. 5, pp. 1044–1052, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Flaumenhaft, J. R. Dilks, J. Richardson et al., “Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles,” Blood, vol. 113, no. 5, pp. 1112–1121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Cerri, D. Chimenti, I. Conti, T. Neri, P. Paggiaro, and A. Celi, “Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells,” Journal of Immunology, vol. 177, no. 3, pp. 1975–1980, 2006. View at Scopus
  60. T. O. Joos and J. Bachmann, “The promise of biomarkers: research and applications,” Drug Discovery Today, vol. 10, no. 9, pp. 615–616, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Nozaki, S. Sugiyama, K. Sugamura et al., “Prognostic value of endothelial microparticles in patients with heart failure,” European Journal of Heart Failure, vol. 12, no. 11, pp. 1223–1228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Chironi, A. Simon, B. Hugel et al., “Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 12, pp. 2775–2780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. R. A. Preston, W. Jy, J. J. Jimenez et al., “Effects of severe hypertension on endothelial and platelet microparticles,” Hypertension, vol. 41, no. 2, pp. 211–217, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Minagar, W. Jy, J. J. Jimenez et al., “Elevated plasma endothelial microparticles in multiple sclerosis,” Neurology, vol. 56, no. 10, pp. 1319–1324, 2001. View at Scopus
  65. F. Sabatier, P. Darmon, B. Hugel et al., “Type 1 and type 2 diabetic patients display different patterns of cellular microparticles,” Diabetes, vol. 51, no. 9, pp. 2840–2845, 2002. View at Scopus
  66. P. A. Brogan and M. J. Dillon, “Endothelial microparticles and the diagnosis of the vasculitides,” Internal Medicine, vol. 43, no. 12, pp. 1115–1119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. E. A. J. Knijff-Dutmer, J. Koerts, R. Nieuwland, E. M. Kalsbeek-Batenburg, and M. A. van de Laar, “Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 46, no. 6, pp. 1498–1503, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Simak, K. Holada, A. M. Risitano, J. H. Zivny, N. S. Young, and J. G. Vostal, “Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria,” British Journal of Haematology, vol. 125, no. 6, pp. 804–813, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. K. H. Jung, K. Chu, S. T. Lee, et al., “Circulating endothelial microparticles as a marker of cerebrovascular disease,” Annals of Neurology, vol. 66, no. 2, pp. 191–199, 2009.
  70. E. Colombo, B. Borgiani, C. Verderio, and R. Furlan, “Microvesicles: novel biomarkers for neurological disorders,” Frontiers in Physiology, vol. 3, article 63, 2012.
  71. M. E. T. Tesselaar, F. P. H. T. M. Romijn, I. K. van der Linden, F. A. Prins, R. M. Bertina, and S. Osanto, “Microparticle-associated tissue factor activity: a link between cancer and thrombosis?” Journal of Thrombosis and Haemostasis, vol. 5, no. 3, pp. 520–527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. H. K. Kim, K. S. Song, Y. S. Park et al., “Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor,” European Journal of Cancer, vol. 39, no. 2, pp. 184–191, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. D. M. Smalley, N. E. Sheman, K. Nelson, and D. Theodorescu, “Isolation and identification of potential urinary microparticle biomarkers of bladder cancer,” Journal of Proteome Research, vol. 7, no. 5, pp. 2088–2096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. H. B. Huttner, P. Janich, M. Köhrmann et al., “The stem cell marker prominin-1/CD133 on membrane particles in human cerebrospinal fluid offers novel approaches for studying central nervous system disease,” Stem Cells, vol. 26, no. 3, pp. 698–705, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. D. Helley, E. Banu, A. Bouziane et al., “Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy,” European Urology, vol. 56, no. 3, pp. 479–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. C. L. Arteaga, M. X. Sliwkowski, C. K. Osborne, E. A. Perez, F. Puglisi, and L. Gianni, “Treatment of HER2-positive breast cancer: current status and future perspectives,” Nature Reviews, vol. 9, no. 1, pp. 16–32, 2011.
  77. J. K. Chan, M. K. Cheung, A. Husain, et al., “Patterns and progress in ovarian cancer over 14 years,” Obstetrics & Gynecology, vol. 108, no. 3, part 1, pp. 521–528, 2006.
  78. A. Torres, K. Torres, R. Maciejewski, and W. H. Harvey, “microRNAs and their role in gynecological tumors,” Medicinal Research Reviews, vol. 31, no. 6, pp. 895–923, 2011.
  79. A. M. Lutz, J. K. Willmann, C. W. Drescher et al., “Early diagnosis of ovarian carcinoma: is a solution in sight?” Radiology, vol. 259, no. 2, pp. 329–345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. A. P. Heintz, F. Odicino, P. Maisonneuve, et al., “Carcinoma of the ovary. FIGO 26th annual report on the results of treatment in gynecological cancer,” International Journal of Gynaecology and Obstetrics, vol. 95, supplement 1, pp. S161–S192, 2006.
  81. E. Kobayashi, Y. Ueda, S. Matsuzaki, et al., “Biomarkers for screening, diagnosis and monitoring of ovarian cancer,” Cancer Epidemiology, Biomarkers & Prevention, vol. 21, no. 11, pp. 1902–1912, 2012. View at Publisher · View at Google Scholar
  82. B. A. Goff, L. S. Mandel, C. W. Drescher et al., “Development of an ovarian cancer symptom index: possibilities for earlier detection,” Cancer, vol. 109, no. 2, pp. 221–227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. M. G. del Carmen, Educational Book of the American Society of Clinical Oncology, American Society of Clinical Oncology, Alexandria, VA, USA, 2006.
  84. R. Ozols, S. Rubin, G. Thomas, and S. Robboy, Principles and Practice of Gynecologic Oncology, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 4th edition, 2005.
  85. I. Díaz-Padilla, A. R. Razak, L. Minig, M. Q. Bernardini, and J. María Del Campo, “Prognostic and predictive value of CA-125 in the primary treatment of epithelial ovarian cancer: potentials and pitfalls,” Clinical & Translational Oncology, vol. 14, no. 1, pp. 15–20, 2012.
  86. A. Sevinc, M. Adli, M. E. Kalender, and C. Camci, “Benign causes of increased serum CA-125 concentration,” Lancet Oncology, vol. 8, no. 12, pp. 1054–1055, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. G. L. Anderson, “Ovarian cancer biomarker screening: still too early to tell,” Women's Health, vol. 6, no. 4, pp. 487–490, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. T. P. Chendrimada, K. J. Finn, X. Ji et al., “MicroRNA silencing through RISC recruitment of eIF6,” Nature, vol. 447, no. 7146, pp. 823–828, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. L. He and G. J. Hannon, “microRNAs: small RNAs with a big role in gene regulation,” Nature Reviews Genetics, vol. 5, no. 7, pp. 522–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. D. C. Corney and A. Y. Nikitin, “MicroRNA and ovarian cancer,” Histology and Histopathology, vol. 23, no. 7–9, pp. 1161–1169, 2008. View at Scopus
  92. N. Rosenfeld, R. Aharonov, E. Meiri, et al., “microRNAs accurately identify cancer tissue origin,” Nature Biotechnology, vol. 26, no. 4, pp. 462–469, 2008.
  93. M. V. Iorio, R. Visone, G. di Leva, et al., “MicroRNA signatures in human ovarian cancer,” Ovarian Research, vol. 67, no. 18, pp. 8699–8707, 2007.
  94. M. Bagnoli, L. de Cecco, A. Granata, et al., “Identification of a chrXq27.3 microRNA cluster associated with early relapse in advanced stage ovarian cancer patients,” Oncotarget, vol. 2, no. 12, pp. 1265–1278, 2011.
  95. S. K. Wyman, R. K. Parkin, P. S. Mitchell et al., “Repertoire of microRNAs in epithelial ovarian cancer as determined by next generation sequencing of small RNA cDNA libraries,” PLoS ONE, vol. 4, no. 4, article e5311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. N. Yanaihara, N. Caplen, E. Bowman et al., “Unique microRNA molecular profiles in lung cancer diagnosis and prognosis,” Cancer Cell, vol. 9, no. 3, pp. 189–198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Bloomston, W. L. Frankel, F. Petrocca et al., “microRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis,” Journal of the American Medical Association, vol. 297, no. 17, pp. 1901–1908, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. M. V. Iorio, M. Ferracin, C. G. Liu, et al., “microRNA gene expression deregulation in human breast cancer,” Cancer Research, vol. 65, pp. 7065–7070, 2005.
  99. A. J. Schetter, S. Y. Leung, J. J. Sohn et al., “microRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma,” Journal of the American Medical Association, vol. 299, no. 4, pp. 425–436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. G. A. Calin, M. Ferracin, A. Cimmino, et al., “A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia,” The New England Journal of Medicine, vol. 353, pp. 1793–1801, 2005.
  101. N. Yang, S. Kaur, S. Volinia et al., “microRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer,” Cancer Research, vol. 68, no. 24, pp. 10307–10314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. I. Mikaelian, M. Scicchitano, O. Mendes, R. A. Thomas, and B. E. Leroy, “Frontiers in preclinical safety biomarkers: microRNAs and messenger RNAs,” Toxicologic Pathology, vol. 41, no. 1, pp. 18–31, 2013. View at Publisher · View at Google Scholar
  103. J. D. Kuhlmann, J. Rasch, P. Wimberger, and S. Kasimir-Bauer, “microRNA and the pathogenesis of ovarian cancer—a new horizon for molecular diagnostics and treatment?” Clinical Chemistry and Laboratory Medicine, vol. 50, no. 4, pp. 601–615, 2012.
  104. D. D. Taylor and C. Gercel-Taylor, “microRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer,” Gynecologic Oncology, vol. 110, no. 1, pp. 13–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. K. E. Resnick, H. Alder, J. P. Hagan, D. L. Richardson, C. M. Croce, and D. E. Cohn, “The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform,” Gynecologic Oncology, vol. 112, no. 1, pp. 55–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. A. Ginestra, D. Miceli, V. Dolo, F. M. Romano, and M. L. Vittorelli, “Membrane vesicles in ovarian cancer fluids: a new potential marker,” Anticancer Research, vol. 19, no. 4, pp. 3439–3445, 1999. View at Scopus
  107. N. Dahiya, C. A. Sherman-Baust, T. L. Wang et al., “microRNA expression and identification of putative miRNA targets in ovarian cancer,” PLoS ONE, vol. 3, no. 6, article e2436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. L. Zhang, S. Volinia, T. Bonome, et al., “Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, pp. 7004–7009, 2008.
  109. C. H. Lee, S. Subramanian, A. H. Beck et al., “microRNA profiling of BRCA1/2 mutation-carrying and non-mutation-carrying high-grade serous carcinomas of ovary,” PLoS ONE, vol. 4, no. 10, article e7314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. E. J. Nam, H. Yoon, S. W. Kim, et al., “microRNA expression profiles in serous ovarian carcinoma,” Clinical Cancer Research, vol. 14, pp. 2690–2695, 2008.
  111. A. Sorrentino, C. G. Liu, A. Addario, C. Peschle, G. Scambia, and C. Ferlini, “Role of microRNAs in drug-resistant ovarian cancer cells,” Gynecologic Oncology, vol. 111, no. 3, pp. 478–486, 2008. View at Publisher · View at Google Scholar · View at Scopus