About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 703626, 7 pages
http://dx.doi.org/10.1155/2013/703626
Research Article

Schiff Base Metal Derivatives Enhance the Expression of HSP70 and Suppress BAX Proteins in Prevention of Acute Gastric Lesion

1Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
4Faculty of Dentistry, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
5Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 Kuala Lumpur, Malaysia

Received 26 June 2013; Accepted 22 September 2013

Academic Editor: Ibrahim Banat

Copyright © 2013 Shahram Golbabapour et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Khaledi, A. A. Alhadi, W. A. Yehye, H. M. Ali, M. A. Abdulla, and P. Hassandarvish, “Antioxidant, cytotoxic activities, and structure-activity relationship of gallic acid-based indole derivatives,” Archiv der Pharmazie, vol. 344, no. 11, pp. 703–709, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M. T. H. Tarafder, M. A. Ali, D. J. Wee, K. Azahari, S. Silong, and K. A. Crouse, “Complexes of a tridentate ONS Schiff base. Synthesis and biological properties,” Transition Metal Chemistry, vol. 25, no. 4, pp. 456–460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. S. B. Desai, P. B. Desai, and K. R. Desai, “Synthesis of some Schiff bases,thiazolidinones and azetidinones derived from 2,6-diaminobenzo[1,2-d:4,5-d′] bisthiazole and their anticancer activities,” Heterocyclic Communications, vol. 7, no. 1, pp. 83–90, 2001. View at Scopus
  4. A. A. Osowole, I. Ott, and O. M. Ogunlana, “Synthesis, spectroscopic, anticancer, and antimicrobial properties of some metal (II) complexes of (substituted) nitrophenol Schiff base,” International Journal of Inorganic Chemistry, vol. 2012, Article ID 206417, 6 pages, 2012. View at Publisher · View at Google Scholar
  5. B. Duff, V. R. Thangella, B. S. Creaven, et al., “Anti-cancer activity and mutagenic potential of novel copper(II) quinolinone Schiff base complexes in hepatocarcinoma cells,” European Journal of Pharmacology, vol. 689, no. 1–3, pp. 45–55, 2012. View at Publisher · View at Google Scholar
  6. K. Shanker, R. Rohini, V. Ravinder, P. M. Reddy, and Y.-P. Ho, “Ru(II) complexes of N4 and N2O2 macrocyclic Schiff base ligands: their antibacterial and antifungal studies,” Spectrochimica Acta A, vol. 73, no. 1, pp. 205–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. R. A. Sheikh, M. Y. Wani, S. Shreaz, and A. A. Hashmi, “Synthesis, characterization and biological screening of some Schiff base macrocyclic ligand based transition metal complexes as antifungal agents,” Arabian Journal of Chemistry, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. K. S. Kumar, S. Ganguly, R. Veerasamy, and E. de Clercq, “Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones,” European Journal of Medicinal Chemistry, vol. 45, no. 11, pp. 5474–5479, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. S. Alam, J. H. Choi, and D. U. Lee, “Synthesis of novel Schiff base analogues of 4-amino-1, 5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity,” Bioorganic & Medicinal Chemistry, vol. 20, no. 13, pp. 4103–4108, 2012. View at Publisher · View at Google Scholar
  10. A. Jarrahpour, J. Sheikh, I. Mounsi, et al., “Computational evaluation and experimental in vitro antibacterial, antifungal and antiviral activity of bis-Schiff bases of isatin and its derivatives,” Medicinal Chemistry Research, vol. 22, no. 3, pp. 1203–1211, 2013. View at Publisher · View at Google Scholar
  11. A. Golcu, M. Tumer, H. Demirelli, and R. A. Wheatley, “Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: synthesis, characterization, properties and biological activity,” Inorganica Chimica Acta, vol. 358, no. 6, pp. 1785–1797, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Golbabapour, N. S. Gwaram, P. Hassandarvish, et al., “Gastroprotection studies of Schiff base zinc (II) derivative complex against acute superficial hemorrhagic mucosal lesions in rats,” PLoS ONE, vol. 8, no. 9, Article ID e75036, 2013. View at Publisher · View at Google Scholar
  13. N. S. Gwaram, L. Musalam, H. M. Ali, and M. A. Abdulla, “Synthesis of 2′-(5-chloro-2-hydroxybenzylidene) benzenesulfanohydrazide Schiff base and its anti-ulcer activity in ethanol-induced gastric mucosal lesions in rats,” Tropical Journal of Pharmaceutical Research, vol. 11, no. 2, pp. 251–257, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Ibrahim, H. Ali, M. Abdullah, et al., “Acute toxicity and gastroprotective effect of the Schiff base ligand 1H-indole-3-ethylene-5-nitrosalicylaldimine and its nickel (II) complex on ethanol induced gastric lesions in rats,” Molecules, vol. 17, no. 10, pp. 12449–12459, 2012. View at Publisher · View at Google Scholar
  15. R. Nirmal, C. R. Prakash, K. Meenakshi, and P. Shanmugapandiyan, “Synthesis and pharmacological evaluation of novel Schiff base analogues of 3-(4-amino) phenylimino) 5-fluoroindolin-2-one,” Journal of Young Pharmacists, vol. 2, no. 2, pp. 162–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Hajrezaie, S. Golbabapour, P. Hassandarvish, et al., “Acute toxicity and gastroprotection studies of a new Schiff base derived copper (II) complex against ethanol-induced acute gastric lesions in rats,” PLoS ONE, vol. 7, no. 12, Article ID e51537, 2012. View at Publisher · View at Google Scholar
  17. M. S. Salga, H. M. Ali, M. A. Abdulla, and S. I. Abdelwahab, “Gastroprotective activity and mechanism of novel dichlorido-zinc(II)-4-(2- (5-methoxybenzylideneamino)ethyl)piperazin-1-iumphenolate complex on ethanol-induced gastric ulceration,” Chemico-Biological Interactions, vol. 195, no. 2, pp. 144–153, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. R. H. Burdon, “Heat shock and the heat shock proteins,” Biochemical Journal, vol. 240, no. 2, pp. 313–324, 1986. View at Scopus
  19. U. Jakob, M. Gaestel, K. Engel, and J. Buchner, “Small heat shock proteins are molecular chaperones,” Journal of Biological Chemistry, vol. 268, no. 3, pp. 1517–1520, 1993. View at Scopus
  20. E. A. Craig, B. D. Gambill, and R. J. Nelson, “Heat shock proteins: molecular chaperones of protein biogenesis,” Microbiological Reviews, vol. 57, no. 2, pp. 402–414, 1993. View at Scopus
  21. K. Hannavy, S. Rospert, and G. Schatz, “Protein import into mitochondria: a paradigm for the translocation of polypeptides across membranes,” Current Opinion in Cell Biology, vol. 5, no. 4, pp. 694–700, 1993. View at Scopus
  22. Y. Shi and J. O. Thomas, “The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate,” Molecular and Cellular Biology, vol. 12, no. 5, pp. 2186–2192, 1992. View at Scopus
  23. R. Zimmermann, “The role of molecular chaperones in protein transport into the mammalian endoplasmic reticulum,” Biological Chemistry, vol. 379, no. 3, pp. 275–282, 1998. View at Scopus
  24. A. R. Clarke, “Molecular chaperones in protein folding and translocation,” Current Opinion in Structural Biology, vol. 6, no. 1, pp. 43–50, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. E. M. Creagh, R. J. Carmody, and T. G. Cotter, “Heat shock protein 70 inhibits caspase-dependent and -independent apoptosis in Jurkat T cells,” Experimental Cell Research, vol. 257, no. 1, pp. 58–66, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. D. D. Mosser, A. W. Caron, L. Bourget et al., “The chaperone function of hsp70 is required for protection against stress-induced apoptosis,” Molecular and Cellular Biology, vol. 20, no. 19, pp. 7146–7159, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Al Batran, F. Al-Bayaty, M. A. Abdulla, et al., “Gastroprotective effects of Corchorus olitorius leaf extract against ethanol-induced gastric mucosal hemorrhagic lesions in rats,” Journal of Gastroenterology and Hepatology, vol. 28, no. 8, pp. 1321–1329, 2013. View at Publisher · View at Google Scholar
  28. I. F. Ismail, S. Golbabapour, P. Hassandarvish, et al., “Gastroprotective activity of polygonum Chinense aqueous leaf extract on ethanol-induced hemorrhagic mucosal lesions in rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 404012, 9 pages, 2012. View at Publisher · View at Google Scholar
  29. K. A. Ketuly, A. H. Hadi, S. Golbabapour, et al., “Acute toxicity and gastroprotection studies with a newly synthesized steroid,” PLoS ONE, vol. 8, no. 3, Article ID e59296, 2013. View at Publisher · View at Google Scholar
  30. Y. Tsukimi and S. Okabe, “Recent advances in gastrointestinal pathophysiology: role of heat shock proteins in mucosal defense and ulcer healing,” Biological and Pharmaceutical Bulletin, vol. 24, no. 1, pp. 1–9, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Golbabapour, M. Hajrezaie, P. Hassandarvish, et al., “Acute toxicity and gastroprotective role of M. Pruriens in ethanol-induced gastric mucosal injuries in rats,” BioMed Research International, vol. 2013, Article ID 974185, 13 pages, 2013. View at Publisher · View at Google Scholar
  32. T. Strobel, L. Swanson, S. Korsmeyer, and S. A. Cannistra, “BAX enhances paclitaxel-induced apoptosis through a p53-independent pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 14094–14099, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. K. G. Wolter, Y.-T. Hsu, C. L. Smith, A. Nechushtan, X.-G. Xi, and R. J. Youle, “Movement of Bax from the cytosol to mitochondria during apoptosis,” Journal of Cell Biology, vol. 139, no. 5, pp. 1281–1292, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Ohkura, D. O. Berbasov, and V. A. Soloshonok, “Chemo- and regioselectivity in the reactions between highly electrophilic fluorine containing dicarbonyl compounds and amines. Improved synthesis of the corresponding imines/enamines,” Tetrahedron, vol. 59, no. 10, pp. 1647–1656, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. P. G. Cozzi, “Metal-salen Schiff base complexes in catalysis: practical aspects,” Chemical Society Reviews, vol. 33, no. 7, pp. 410–421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Tümer, D. Ekinci, F. Tümer, and A. Bulut, “Synthesis, characterization and properties of some divalent metal(II) complexes: their electrochemical, catalytic, thermal and antimicrobial activity studies,” Spectrochimica Acta A, vol. 67, no. 3-4, pp. 916–929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. C. Menon, H. B. Singh, R. P. Patel, and S. K. Kulshreshtha, “Synthesis, structure and reactions of the first tellurium-containing macrocyclic Schiff base,” Journal of the Chemical Society, no. 7, pp. 1203–1207, 1996. View at Scopus
  38. Y. Pérez, A. Oyárzabal, R. Mas, et al., “Protective effect of D-002, a mixture of beeswax alcohols, against indomethacin-induced gastric ulcers and mechanism of action,” Journal of Natural Medicines, vol. 67, no. 1, pp. 182–189, 2013. View at Publisher · View at Google Scholar
  39. Y. Raji, W. A. Oyeyemi, S. T. Shittu, et al., “Gastro-protective effect of methanol extract of Ficus asperifolia bark on indomethacin-induced gastric ulcer in rats,” Nigerian Journal of Physiological Sciences, vol. 26, no. 1, pp. 43–48, 2011.
  40. V. Mishra, M. Agrawal, S. A. Onasanwo, et al., “Anti-secretory and cyto-protective effects of chebulinic acid isolated from the fruits of Terminalia chebula on gastric ulcers,” Phytomedicine, vol. 20, no. 6, pp. 506–511, 2013. View at Publisher · View at Google Scholar
  41. R. Colucci, L. Antonioli, N. Bernardini, et al., “Nonsteroidal anti-inflammatory drug-activated gene-1 plays a role in the impairing effects of cyclooxygenase inhibitors on gastric ulcer healing,” Journal of Pharmacology and Experimental Therapeutics, vol. 342, no. 1, pp. 140–149, 2012. View at Publisher · View at Google Scholar
  42. S. Mohan, S. I. Abdelwahab, B. Kamalidehghan, et al., “Involvement of NF-κB and Bcl2/Bax signaling pathways in the apoptosis of MCF7 cells induced by a xanthone compound Pyranocycloartobiloxanthone A,” Phytomedicine, vol. 19, no. 11, pp. 1007–1015, 2012. View at Publisher · View at Google Scholar