About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 705418, 9 pages
http://dx.doi.org/10.1155/2013/705418
Research Article

Enhanced Production of Acarbose and Concurrently Reduced Formation of Impurity C by Addition of Validamine in Fermentation of Actinoplanes utahensis ZJB-08196

1Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
2Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
3Huadong Medicine Co., Ltd., Hangzhou, Zhejiang 310011, China

Received 4 September 2012; Revised 28 November 2012; Accepted 2 December 2012

Academic Editor: Jozef Anné

Copyright © 2013 Ya-Ping Xue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. F. Wehmeier and W. Piepersberg, “Biotechnology and molecular biology of the α-glucosidase inhibitor acarbose,” Applied Microbiology and Biotechnology, vol. 63, no. 6, pp. 613–625, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Laube, “Acarbose: an update of its therapeutic use in diabetes treatment,” Clinical Drug Investigation, vol. 22, no. 3, pp. 141–156, 2002. View at Scopus
  3. J. A. Balfour and D. McTavish, “Acarbose. An update of its pharmacology and therapeutic use in diabetes mellitus,” Drugs, vol. 46, no. 6, pp. 1025–1054, 1993. View at Scopus
  4. J. L. Chiasson, R. G. Josse, R. Gomis, M. Hanefeld, A. Karasik, and M. Laakso, “Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial,” The Lancet, vol. 359, no. 9323, pp. 2072–2077, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Delorme and J. L. Chiasson, “Acarbose in the prevention of cardiovascular disease in subjects with impaired glucose tolerance and type 2 diabetes mellitus,” Current Opinion in Pharmacology, vol. 5, no. 2, pp. 184–189, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. C. S. Zhang, A. Stratmann, O. Block et al., “Biosynthesis of the C7-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-O-phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway,” Journal of Biological Chemistry, vol. 277, no. 25, pp. 22853–22862, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Mahmud, I. Tornus, E. Egelkrout et al., “Biosynthetic studies on the α-glucosidase inhibitor acarbose in Actinoplanes sp.: 2-epi-5-epi-valiolone is the direct precursor of the valienamine moiety,” Journal of the American Chemical Society, vol. 121, no. 30, pp. 6973–6983, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Mahmud, “The C7N aminocyclitol family of natural products,” Natural Product Reports, vol. 20, no. 1, pp. 137–166, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. F. Rodriguez, A. De Lucas, M. Carmona, and F. Cañas, “Application of ion exchange to purify acarbose from fermentation broths,” Biochemical Engineering Journal, vol. 40, no. 1, pp. 130–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Beunink, M. Schedel, and U. Steiner, “Osmotically controlled fermentation process for the preparation of acarbose,” DE, 19637591, US, 6130072, 1997.
  11. S. M. Wei, G. Chen, W. Tian, D. S. Liu, Y. X. Zhang, and J. Y. He, “The feeding techniques in acarbose fermentation,” Chinese Journal of New Drugs, vol. 17, no. 11, pp. 923–926, 2008. View at Scopus
  12. K. T. Li, S. J. Wie, L. Huang, and X. Cheng, “An effective and simplified scale-up strategy for acarbose fermentation based on the carbon source control,” World Journal of Microbiology and Biotechnology, vol. 28, no. 2, pp. 749–753, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. K. T. Li, J. Zhou, S. J. Wei, and X. Cheng, “An optimized industrial fermentation processes for acarbose production by Actinoplanes sp. A56,” Bioresource Technology, vol. 118, pp. 580–583, 2012. View at Publisher · View at Google Scholar
  14. Y. J. Wang, L. L. Liu, Z. H. Feng, Z. Q. Liu, and Y. G. Zheng, “Optimization of media composition and culture conditions for acarbose production by Actinoplanes utahensis ZJB-08196,” World Journal of Microbiology & Biotechnology, vol. 27, no. 12, pp. 2759–2766, 2011. View at Publisher · View at Google Scholar
  15. Y. J. Wang, L. L. Liu, Y. S. Wang, Y. P. Xue, Y. G. Zheng, and Y. C. Shen, “Actinoplanes utahensis ZJB-08196 fed-batch fermentation at elevated osmolality for enhancing acarbose production,” Bioresource Technology, vol. 103, no. 1, pp. 337–342, 2012. View at Publisher · View at Google Scholar
  16. Z. H. Feng, Y. S. Wang, and Y. G. Zheng, “A new microtiter plate-based screening method for microorganisms producing α-amylase inhibitors,” Biotechnology and Bioprocess Engineering, vol. 16, no. 5, pp. 894–900, 2011.
  17. Y. J. Wang, Y. G. Zheng, Y. P. Xue, Y. S. Wang, and Y. C. Shen, “Analysis and determination of anti-diabetes drug acarbose and its structural analogs,” Current Pharmaceutical Analysis, vol. 7, no. 1, pp. 12–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. J. Wang, F. Z. Dong, L. Yu, and Y. G. Zheng, “Study on acarbose adsorption performance of cation exchanger SAC 001×7,” Journal of Chemical Engineering of Chinese Universities, vol. 26, no. 3, pp. 493–498, 2012.
  19. L. H. Sun, M. G. Li, Y. S. Wang, and Y. G. Zheng, “Significantly enhanced production of acarbose in fed-batch fermentation with the addition of S-adenosylmethionine,” Journal of Microbiology and Biotechnology, vol. 22, no. 6, pp. 826–831, 2012. View at Publisher · View at Google Scholar
  20. B. T. Choi and C. S. Shin, “Reduced formation of byproduct component C in acarbose fermentation by Actinoplanes sp. CKD485-16,” Biotechnology Progress, vol. 19, no. 6, pp. 1677–1682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. B. T. Choi and C. S. Shin, “Isolation and characterization of a novel intracellular glucosyltransferase from the acarbose producer Actinoplanes sp. CKD485-16,” Applied Microbiology and Biotechnology, vol. 65, no. 3, pp. 273–280, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. G. Zheng, Y. P. Xue, Y. C. Shen, and Y. F. Wu, “Separation and preparation of validamycin A and validamycin B using anion-exchange resin,” Chemical Engineering Communications, vol. 193, no. 12, pp. 1581–1585, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. G. Zheng, Y. P. Xue, and Y. C. Shen, “Production of valienamine by a newly isolated strain: Stenotrophomonas maltrophilia,” Enzyme and Microbial Technology, vol. 39, no. 5, pp. 1060–1065, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. P. Xue, Y. G. Zheng, and Y. C. Shen, “Enhanced production of valienamine by Stenotrophomonas maltrophilia with fed-batch culture in a stirred tank bioreactor,” Process Biochemistry, vol. 42, no. 6, pp. 1033–1038, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. G. Zheng, X. L. Chen, Y. P. Xue, Y. S. Wang, and Y. C. Shen, “Microbe method for producing valienamine and validamine,” WO2005098014 (A1), 2005.
  26. Y. P. Xue, Y. G. Zheng, X. L. Chen, and Y. C. Shen, “Quantitative determination of valienamine and validamine by thin-layer chromatography,” Journal of Chromatographic Science, vol. 45, no. 2, pp. 87–90, 2007. View at Scopus
  27. W. Jiang, Y. T. Yang, Y. M. Cai, M. J. Guo, and J. Chu, “Comprehensive effects of maltose concentration and medium osmotic pressure on acarbose in Actinoplanes sp. fermentation,” Chinese Journal of Pharmaceuticals, vol. 41, no. 3, pp. 178–182, 2010.
  28. K. Mihaljevic, J. Azaric, B. Bajic, V. Mrsa, and D. Kokanj, “Acarbose purification process,” US, 6734300, 2004.
  29. C. L. Lin, T. L. Huang, J. K. Chen, and C. S. Wu, “Purification process for manufacturing a high pure acarbose,” US, 07253278, 2007.
  30. V. Keri, L. Deak, and C. Szabo, “Purification of acarbose by chromatography with non-aromatic, strong acid cation exchanger,” WO2003014135-A, WO2003014135-A1, AU2002236918-A1, 2003.
  31. V. M. Ubiyvovk, V. M. Ananin, A. Y. Malyshev, H. A. Kang, and A. A. Sibirny, “Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1,” BMC Biotechnology, vol. 11, article 8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Ning, J. Hong, Y. Bi et al., “Progress in diabetes research in China,” Journal of Diabetes, vol. 1, no. 3, pp. 163–172, 2009. View at Scopus
  33. W. Wang, W. P. McGreevey, C. Fu et al., “Type 2 diabetes mellitus in China: a preventable economic burden,” American Journal of Managed Care, vol. 15, no. 9, pp. 593–601, 2009. View at Scopus