About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 717546, 4 pages
http://dx.doi.org/10.1155/2013/717546
Research Article

In Vivo Healthy Knee Kinematics during Dynamic Full Flexion

1Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A Building, P.O. Box 116250, Gainesville, FL 32611-6250, USA
2Department of Orthopaedic Surgery, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
3Department of Orthopaedic Surgery, Faculty of Medicine, Ehime University, 10-13 Dogo-himata, Matsuyama, Ehime 790-8577, Japan

Received 11 September 2012; Accepted 25 October 2012

Academic Editor: José M. Vilar

Copyright © 2013 Satoshi Hamai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. D. Komistek, D. A. Dennis, and M. Mahfouz, “In vivo fluoroscopic analysis of the normal human knee,” Clinical Orthopaedics and Related Research, no. 410, pp. 69–81, 2003. View at Scopus
  2. G. Li, L. E. DeFrate, E. P. Sang, T. J. Gill, and H. E. Rubash, “In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models,” American Journal of Sports Medicine, vol. 33, no. 1, pp. 102–107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. T. A. Moro-oka, S. Hamai, H. Miura et al., “Can magnetic resonance imaging-derived bone models be used for accurate motion measurement with single-plane three-dimensional shape registration?” Journal of Orthopaedic Research, vol. 25, no. 7, pp. 867–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. A. Moro-Oka, S. Hamai, H. Miura et al., “Dynamic activity dependence of in vivo normal knee kinematics,” Journal of Orthopaedic Research, vol. 26, no. 4, pp. 428–434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. P. F. Hill, V. Vedi, A. Williams, H. Iwaki, V. Pinskerova, and M. A. R. Freeman, “Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI,” Journal of Bone and Joint Surgery B, vol. 82, no. 8, pp. 1196–1198, 2000. View at Scopus
  6. P. Johal, A. Williams, P. Wragg, D. Hunt, and W. Gedroyc, “Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using “interventional” MRI,” Journal of Biomechanics, vol. 38, no. 2, pp. 269–276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Nakagawa, Y. Kadoya, S. Todo et al., “Tibiofemoral movement 3: full flexion in the living knee studied by MRI,” Journal of Bone and Joint Surgery B, vol. 82, no. 8, pp. 1199–1200, 2000. View at Scopus
  8. J. Yao, S. L. Lancianese, K. R. Hovinga, J. Lee, and A. L. Lerner, “Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion,” Journal of Orthopaedic Research, vol. 26, no. 5, pp. 673–684, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Pinskerova, K. M. Samuelson, J. Stammers, K. Maruthainar, A. Sosna, and M. A. R. Freeman, “The knee in full flexion: an anatomical study,” Journal of Bone and Joint Surgery B, vol. 91, no. 6, pp. 830–834, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. G. Eckhoff, T. F. Dwyer, J. M. Bach, V. M. Spitzer, and K. D. Reinig, “Three-dimensional morphology of the distal part of the femur viewed in virtual reality,” Journal of Bone and Joint Surgery A, vol. 83, no. 2, pp. 43–50, 2001. View at Scopus
  11. S. A. Banks and W. A. Hodge, “2003 Hap Paul Award Paper of the International Society for Technology in Arthroplasty: design and activity dependence of kinematics in fixed and mobile-bearing knee arthroplasties,” Journal of Arthroplasty, vol. 19, no. 7, pp. 809–816, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Yamaguchi, K. Gamada, T. Sasho, H. Kato, M. Sonoda, and S. A. Banks, “In vivo kinematics of anterior cruciate ligament deficient knees during pivot and squat activities,” Clinical Biomechanics, vol. 24, no. 1, pp. 71–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Mu, T. Moro-Oka, P. Johal, S. Hamai, M. A. R. Freeman, and S. A. Banks, “Comparison of static and dynamic knee kinematics during squatting,” Clinical Biomechanics, vol. 26, no. 1, pp. 106–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Koo and T. P. Andriacchi, “The knee joint center of rotation is predominantly on the lateral side during normal walking,” Journal of Biomechanics, vol. 41, no. 6, pp. 1269–1273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Kozanek, A. Hosseini, F. Liu et al., “Tibiofemoral kinematics and condylar motion during the stance phase of gait,” Journal of Biomechanics, vol. 42, no. 12, pp. 1877–1884, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Hoshino and S. Tashman, “Internal tibial rotation during in vivo, dynamic activity induces greater sliding of tibio-femoral joint contact on the medial compartment,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 20, no. 7, pp. 1268–1275, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Tokuhara, Y. Kadoya, S. Nakagawa, A. Kobayashi, and K. Takaoka, “The flexion gap in normal knees. An MRI study,” Journal of Bone and Joint Surgery B, vol. 86, no. 8, pp. 1133–1136, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Fukagawa, S. Matsuda, Y. Tashiro, M. Hashizume, and Y. Iwamoto, “Posterior displacement of the tibia increases in deep flexion of the knee,” Clinical Orthopaedics and Related Research, vol. 468, no. 4, pp. 1107–1114, 2010. View at Publisher · View at Google Scholar · View at Scopus