About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 723680, 9 pages
http://dx.doi.org/10.1155/2013/723680
Research Article

Copper Enhanced Monooxygenase Activity and FT-IR Spectroscopic Characterisation of Biotransformation Products in Trichloroethylene Degrading Bacterium: Stenotrophomonas maltophilia PM102

1Department of Biotechnology, Burdwan University, Golapbag, Burdwan, West Bengal, 713104, India
2Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, 721657, India

Received 30 April 2013; Revised 13 July 2013; Accepted 15 July 2013

Academic Editor: Subash C. B. Gopinath

Copyright © 2013 Piyali Mukherjee and Pranab Roy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. T. Gibson, G. E. Cardini, F. C. Maseles, and R. E. Kallio, “Incorporation of Oxygen-18 into benzene by Pseudomonas putida,” Biochemistry, vol. 9, no. 7, pp. 1631–1635, 1970. View at Scopus
  2. Y. Tao, A. Fishman, W. E. Bentley, and T. K. Wood, “Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1,” Applied and Environmental Microbiology, vol. 70, no. 7, pp. 3814–3820, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. D. R. Boyd and G. N. Sheldrake, “The dioxygenase-catalysed formation of vicinal cis-diols,” Natural Product Reports, vol. 15, no. 3, pp. 309–324, 1998. View at Scopus
  4. D. A. Widdowson and D. W. Ribbons, “The use of substituted cyclohexadiene diols as versatile chiral synthons,” Janssen Chimica, vol. 8, pp. 3–9, 1990.
  5. G. N. Sheldrake, “Biologically derived arene cis-dihydrodiols as synthetic building blocks,” in Chirality in Industry, the Commercial Manufacture and Application of Optically Active Compounds, A. N. Collins, G. N. Sheldrake, and J. Crosby, Eds., pp. 127–166, John Wiley & Sons, Chichester, UK, 1992.
  6. H. A. J. Carless, “The use of cyclohexa-3,5-diene-1,2-diols in enantiospecific synthesis,” Tetrahedron Asymmetry, vol. 3, no. 7, pp. 795–826, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. G. J. Zylstra and D. T. Gibson, “Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli,” Journal of Biological Chemistry, vol. 264, no. 25, pp. 14940–14946, 1989. View at Scopus
  8. A. M. Byrne, J. J. Kukor, and R. H. Olsen, “Sequence analysis of the gene cluster encoding toluene-3-monooxygenase from Pseudomonas pickettii PKO1,” Gene, vol. 154, no. 1, pp. 65–70, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. G. R. Johnson and R. H. Olsen, “Nucleotide sequence analysis of genes encoding a toluene/benzene-2- monooxygenase from Pseudomonas sp. strain JS150,” Applied and Environmental Microbiology, vol. 61, no. 9, pp. 3336–3346, 1995. View at Scopus
  10. J. E. Anderson and P. L. Mccarty, “Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase,” Applied and Environmental Microbiology, vol. 63, no. 2, pp. 687–693, 1997. View at Scopus
  11. L. P. Wackett, G. A. Brusseau, S. R. Householder, and R. S. Hanson, “Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria,” Applied and Environmental Microbiology, vol. 55, no. 11, pp. 2960–2964, 1989. View at Scopus
  12. D. Arciero, T. Vannelli, M. Logan, and A. B. Hooper, “Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea,” Biochemical and Biophysical Research Communications, vol. 159, no. 2, pp. 640–643, 1989. View at Scopus
  13. C. Werlen, H.-P. E. Kahler, and J. R. van der Meer, “The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation,” Journal of Biological Chemistry, vol. 271, no. 8, pp. 4009–4016, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Mukherjee and P. Roy, “Cloning, sequencing and expression of novel trichloroethylene degradation genes from Stenotrophomonas maltophilia PM102: a case of gene duplication,” Journal of Bioremediation & Biodegradation, vol. 4, no. 2, p. 177, 2013. View at Publisher · View at Google Scholar
  15. V. B. Urlacher, S. Lutz-Wahl, and R. D. Schmid, “Microbial P450 enzymes in biotechnology,” Applied Microbiology and Biotechnology, vol. 64, no. 3, pp. 317–325, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. E. Graham and J. A. Peterson, “How similar are P450s and what can their differences teach us?” Archives of Biochemistry and Biophysics, vol. 369, no. 1, pp. 24–29, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Sono, M. P. Roach, E. D. Coulter, and J. H. Dawson, “Heme-containing oxygenases,” Chemical Reviews, vol. 96, no. 7, pp. 2841–2887, 1996. View at Scopus
  18. M. J. van der Werf, “Purification and characterization of a Baeyer-Villiger mono-oxygenase from Rhodococcus erythropolis DCL14 involved in three different monocyclic monoterpene degradation pathways,” Biochemical Journal, vol. 347, no. 3, pp. 693–701, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. McGuirl and D. M. Dooley, “Copper-containing oxidases,” Current Opinion in Chemical Biology, vol. 3, pp. 138–144, 1999.
  20. J. C. Murreil, B. Gilbert, and I. R. McDonald, “Molecular biology and regulation of methane monooxygenase,” Archives of Microbiology, vol. 173, no. 5-6, pp. 325–332, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Zazueta-Sandoval, V. Z. Novoa, H. S. Jiménez, and R. C. Ortiz, “A different method of measuring and detecting mono- and dioxygenase activities: key enzymes in hydrocarbon biodegradation,” Applied Biochemistry and Biotechnology Part A, vol. 108, no. 1–3, pp. 725–736, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. W. E. Huang, D. Hopper, R. Goodacre, M. Beckmann, A. Singer, and J. Draper, “Rapid characterization of microbial biodegradation pathways by FT-IR spectroscopy,” Journal of Microbiological Methods, vol. 67, no. 2, pp. 273–280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Mukherjee and P. Roy, “Identification and characterisation of a bacterial isolate capable of growth on trichloroethylene as the sole carbon source,” Advances in Microbiology, vol. 2, no. 3, pp. 184–194, 2012. View at Publisher · View at Google Scholar
  24. P. Mukherjee and P. Roy, “Purification and identification of trichloroethylene induced proteins from Stenotrophomonas maltophilia PM102 by immuno-affinity-chromatography and MALDI-TOF Mass spectrometry,” SpringerPlus, vol. 2, p. 207, 2013.
  25. P. Mukherjee and P. Roy, “Persistent organic pollutants induced protein expression and immunocrossreactivity by Stenotrophomonas maltophilia PM102: a prospective bioremediating candidate,” BioMed Research International, vol. 2013, Article ID 714232, 9 pages, 2013. View at Publisher · View at Google Scholar
  26. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  27. J. Coates, Interpretation of Infrared Spectra. Encyclopedia of Analytical Chemistry, John Wiley & Sons, Chichester, UK, 2000.
  28. J. E. Coligan, B. M. Dunn, D. W. Speicher, P. T. Wingfield, and H. L. Ploegh, Eds., Current Protocols in Protein Science, John Wiley & Sons, Chichester, UK, 1998.
  29. M. S. Moss and H. J. Rylance, “The Fujiwara reaction: some observations on the mechanism,” Nature, vol. 210, no. 5039, pp. 945–946, 1966. View at Publisher · View at Google Scholar · View at Scopus
  30. S. M. Smith, S. Rawat, J. Telser, B. M. Hoffman, T. L. Stemmler, and A. C. Rosenzweig, “Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M,” Biochemistry, vol. 50, no. 47, pp. 10231–10240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. G. R. Hemsworth, E. J. Taylor, R. Q. Kim, et al., “The copper active site of CBM33 polysaccharide oxygenases,” Journal of the American Chemical Society, vol. 135, pp. 6069–6077, 2013. View at Publisher · View at Google Scholar
  32. B. Westereng, T. Ishida, G. Vaaje-Kolstad et al., “The putative endoglucanase pcGH61D from phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose,” PLoS ONE, vol. 6, no. 11, Article ID e27807, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Whittaker, D. Monroe, D. J. Oh, and S. Anderson, “Trichloroethylene pathway map,” http://umbbd.ethz.ch/tce/tce_image_map.html.
  34. “Ethylene oxide product overview,” Ethylene oxide. Shell Chemicals. Retrieved 2009-10-08.
  35. “Ethylene oxide,” Chemical Backgrounders Index. The Environment Writer. Retrieved 2009-09-29.