About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 724763, 9 pages
Research Article

Design and In Vitro Evaluation of a New Nano-Microparticulate System for Enhanced Aqueous-Phase Solubility of Curcumin

1Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, TX 78712, USA
2Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, MOR, Mexico
3Polymer Laboratory, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
4Center for Materials Science, Zewail University, Zewail City of Science and Technology, 6th of October City, Giza 12588, Egypt

Received 11 April 2013; Revised 23 June 2013; Accepted 25 June 2013

Academic Editor: Mohamad A. Hussein

Copyright © 2013 Diana Guzman-Villanueva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Curcumin, a yellow polyphenol derived from the turmeric Curcuma longa, has been associated with a diverse therapeutic potential including anti-inflammatory, antioxidant, antiviral, and anticancer properties. However, the poor aqueous solubility and low bioavailability of curcumin have limited its potential when administrated orally. In this study, curcumin was encapsulated in a series of novel nano-microparticulate systems developed to improve its aqueous solubility and stability. The nano-microparticulate systems are based entirely on biocompatible, biodegradable, and edible polymers including chitosan, alginate, and carrageenan. The particles were synthesized via ionotropic gelation. Encapsulating the curcumin into the hydrogel nanoparticles yielded a homogenous curcumin dispersion in aqueous solution compared to the free form of curcumin. Also, the in vitro release profile showed up to 95% release of curcumin from the developed nano-microparticulate systems after 9 hours in PBS at pH 7.4 when freeze-dried particles were used.