About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 727143, 8 pages
http://dx.doi.org/10.1155/2013/727143
Research Article

Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

1Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Republic of Korea
2Institute of Natural Medicine, Hallym University, Chuncheon 200-702, Republic of Korea
3Department of Biochemistry, College of Medicine, Hallym University, Chuncheon 200-702, Republic of Korea

Received 9 November 2012; Revised 11 January 2013; Accepted 11 January 2013

Academic Editor: Elvira Gonzalez De Mejia

Copyright © 2013 Tae Hyeon Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications.