About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 727143, 8 pages
http://dx.doi.org/10.1155/2013/727143
Research Article

Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

1Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Republic of Korea
2Institute of Natural Medicine, Hallym University, Chuncheon 200-702, Republic of Korea
3Department of Biochemistry, College of Medicine, Hallym University, Chuncheon 200-702, Republic of Korea

Received 9 November 2012; Revised 11 January 2013; Accepted 11 January 2013

Academic Editor: Elvira Gonzalez De Mejia

Copyright © 2013 Tae Hyeon Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. V. Santiago, “Overview of the complications of diabetes,” Clinical Chemistry, vol. 32, no. 10, pp. 48–53, 1986.
  2. G. Dario, M. Raffaele, Q. Antonio et al., “Tolrestat for mild diabetic neuropathy: a 52-week, randomized, placebo-controlled trial,” Annals of Internal Medicine, vol. 118, no. 1, pp. 7–11, 1993.
  3. J. Pirart, “Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973,” Diabete et Metabolisme, vol. 3, no. 3, pp. 173–182, 1977. View at Scopus
  4. Y. N. Chihiro, “Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications,” Pharmacological Reviews, vol. 50, no. 1, pp. 21–33, 1998. View at Scopus
  5. D. R. Tomlinson, E. J. Stevens, and L. T. Diemel, “Aldose reductase inhibitors and their potential for the treatment of diabetic complications,” Trends in Pharmacological Sciences, vol. 15, no. 8, pp. 293–297, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. J. H. Kinoshita, “Mechanisms intiating cataract formation,” Investigative Ophthalmology and Visual Science, vol. 13, no. 10, pp. 713–724, 1974.
  7. T. Tsuda, F. Horio, K. Uchida, H. Aoki, and T. Osawa, “Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice,” Journal of Nutrition, vol. 133, no. 7, pp. 2125–2130, 2003. View at Scopus
  8. S. D. Varma, I. Mikuni, and J. H. Kinoshita, “Flavonoids as inhibitors of lens aldose reductase,” Science, vol. 188, no. 4194, pp. 1215–1216, 1975. View at Scopus
  9. S. D. Varma and J. H. Kinoshita, “Inhibition of lens aldose reductase by flavonoids: their possible role in the prevention of diabetic cataracts,” Biochemical Pharmacology, vol. 25, no. 22, pp. 2505–2513, 1976. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Okuda, I. Miwa, and K. Inagaki, “Inhibition of aldose reductases from rat and bovine lenses by flavonoids,” Biochemical Pharmacology, vol. 31, no. 23, pp. 3807–3822, 1982. View at Publisher · View at Google Scholar · View at Scopus
  11. K. K. Adom and R. H. Liu, “Antioxidant activity of grains,” Journal of Agricultural and Food Chemistry, vol. 50, no. 21, pp. 6182–6187, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Dewanto, X. Wu, and R. H. Liu, “Processed sweet corn has higher antioxidant activity,” Journal of Agricultural and Food Chemistry, vol. 50, no. 17, pp. 4959–4964, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. E. Snook, N. W. Widstrom, B. R. Wiseman, P. F. Byrne, J. S. Harwood, and C. E. Costello, “New C-4”-hydroxy derivatives of maysin and 3'-methoxymaysin isolated from corn silks (Zea mays),” Journal of Agricultural and Food Chemistry, vol. 43, no. 10, pp. 2740–2745, 1995. View at Scopus
  14. M. Miyazawa and M. Hisama, “Antimutagenic activity of phenyl-propanoids from clove (Syzygium aromaticum),” Journal of Agricultural and Food Chemistry, vol. 51, no. 22, pp. 6413–6422, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. C. K. Wang and W. H. Lee, “Separation, characteristics, and biological activities of phenolics in areca fruit,” Journal of Agricultural and Food Chemistry, vol. 44, no. 8, pp. 2014–2019, 1996. View at Scopus
  16. L. R. Fergyson, “Role of plant polyphenols in genomic stability,” Mutation Research, vol. 475, no. 1-2, pp. 89–111, 2001.
  17. N. Katsube, K. Iwashita, T. Tsushida, K. Yamaki, and M. Kobori, “Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins,” Journal of Agricultural and Food Chemistry, vol. 51, no. 1, pp. 68–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Loo, “Redox-sensitive mechanisms of phytochemical-mediated inhibition of cancer cell proliferation,” Journal of Nutritional Biochemistry, vol. 14, no. 2, pp. 64–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. J. H. Renault, P. Thépenier, M. Zèches-Hanrot et al., “Preparative separation of anthocyanins by gradient elution centrifugal partition chromatograghy,” Journal of Chromatography A, vol. 763, no. 1-2, pp. 345–352, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. S. P. Dufrane, W. J. Malaisse, and A. Sener, “A micromethod for the assay of aldose reductase, its application to pancreatic islets,” Biochemical Medicine, vol. 32, no. 1, pp. 99–105, 1984. View at Scopus
  21. S. Hayman and J. H. Kinoshita, “Isolation and properties of lens aldose reductase,” The Journal of Biological Chemistry, vol. 240, no. 2, pp. 877–882, 1965.
  22. Y. S. Lee, Y. H. Kang, J. Y. Jung et al., “Inhibitory constituents of aldose reductase in the fruiting body of Phellinus linteus,” Biological and Pharmaceutical Bulletin, vol. 31, no. 4, pp. 765–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. S. Lim, Y. J. Jung, S. K. Hyun, Y. S. Lee, and J. S. Choi, “Rat lens aldose reductase inhibitory constituents of Nelumbo nucifera stamens,” Phytotherapy Research, vol. 20, no. 10, pp. 825–830, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Sato and P. F. Kador, “Inhibition of aldehyde reductase by aldose reductase inhibitors,” Biochemical Pharmacology, vol. 40, no. 5, pp. 1033–1042, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Miwa, A. S. Chen, and T. Taguchi, “Glyceraldehyde is present in rat lens and its level is increased in diabetes mellitus,” Ophthalmic Research, vol. 41, no. 2, pp. 98–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Kwang-Hyok, P. Ui-Nam, C. Sarkar, and R. Bhadra, “A sensitive assay of red blood cell sorbitol level by high performance liquid chromatography: potential for diagnostic evaluation of diabetes,” Clinica Chimica Acta, vol. 354, no. 1-2, pp. 41–47, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Shinolara, Y. Ohta, M. Yamachi, and I. Iahiguro, “Improved fluorometric enzymatic sorbitol assay in human blood,” Clinica Chimica Acta, vol. 273, no. 2, pp. 171–184, 1998.
  28. R. Yawadio, S. Tanimori, and N. Morita, “Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities,” Food Chemistry, vol. 101, no. 4, pp. 1616–1625, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Milan, “Natural flavonoids as potential multifunctional agents in prevention of diabetic cataract,” Interdisciplinary Toxicology, vol. 4, no. 2, pp. 69–77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. S. de Pascual-Teresa, C. Santos-Buelga, and J. C. Rivas-Gonzalo, “LC-MS analysis of anthocyanins from purple corn cob,” Journal of the Science of Food and Agriculture, vol. 82, no. 9, pp. 1003–1006, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Hisashi, M. Toshio, T. Iwao, and Y. Masayuki, “Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity,” Chemical and Pharmaceutical Bulletin, vol. 50, no. 6, pp. 788–795, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. K. M. Bohren and C. E. Grimshaw, “The sorbinil trap: a predicted dead-end complex confirms the mechanism of aldose reductase inhibition,” Biochemistry, vol. 39, no. 32, pp. 9967–9974, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. W. G. Robison Jr. and N. Laver, “Ocular lesions in animal models of human diabetes,” in Frontiers in Diabetes Research, Lessons From Animal Diabetes IV, E. Shafrir, Ed., pp. 145–163, Smith-Gordon, London, UK, 1993.